Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlabKPM/mlperr_weighted.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlabKPM/mlperr_weighted.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,68 @@ +function [e, edata, eprior] = mlperr_weighted(net, x, t, eso_w) +%MLPERR Evaluate error function for 2-layer network. +% +% Description +% E = MLPERR(NET, X, T) takes a network data structure NET together +% with a matrix X of input vectors and a matrix T of target vectors, +% and evaluates the error function E. The choice of error function +% corresponds to the output unit activation function. Each row of X +% corresponds to one input vector and each row of T corresponds to one +% target vector. +% +% [E, EDATA, EPRIOR] = MLPERR(NET, X, T) additionally returns the data +% and prior components of the error, assuming a zero mean Gaussian +% prior on the weights with inverse variance parameters ALPHA and BETA +% taken from the network data structure NET. +% +% See also +% MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPBKP, MLPGRAD +% + +% Copyright (c) Ian T Nabney (1996-9) + +% Check arguments for consistency +errstring = consist(net, 'mlp', x, t); +if ~isempty(errstring); + error(errstring); +end +[y, z, a] = mlpfwd(net, x); + +switch net.actfn + + case 'linear' %Linear outputs + + edata = 0.5*sum(sum((y - t).^2)); + + case 'logistic' % Logistic outputs + + % Ensure that log(1-y) is computable: need exp(a) > eps + maxcut = -log(eps); + % Ensure that log(y) is computable + mincut = -log(1/realmin - 1); + a = min(a, maxcut); + a = max(a, mincut); + y = 1./(1 + exp(-a)); + edata = - sum(sum(t.*log(y) + (1 - t).*log(1 - y))); + + case 'softmax' % Softmax outputs + + nout = size(a,2); + % Ensure that sum(exp(a), 2) does not overflow + maxcut = log(realmax) - log(nout); + % Ensure that exp(a) > 0 + mincut = log(realmin); + a = min(a, maxcut); + a = max(a, mincut); + temp = exp(a); + y = temp./(sum(temp, 2)*ones(1,nout)); + % Ensure that log(y) is computable + y(y<realmin) = realmin; + e_app=sum(t.*log(y),2); + edata = - eso_w'*e_app; + clear e_app; + + otherwise + error(['Unknown activation function ', net.actfn]); +end + +[e, edata, eprior] = errbayes(net, edata);