Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/rbfbkp.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/rbfbkp.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,72 @@ +function g = rbfbkp(net, x, z, n2, deltas) +%RBFBKP Backpropagate gradient of error function for RBF network. +% +% Description +% G = RBFBKP(NET, X, Z, N2, DELTAS) takes a network data structure NET +% together with a matrix X of input vectors, a matrix Z of hidden unit +% activations, a matrix N2 of the squared distances between centres and +% inputs, and a matrix DELTAS of the gradient of the error function +% with respect to the values of the output units (i.e. the summed +% inputs to the output units, before the activation function is +% applied). The return value is the gradient G of the error function +% with respect to the network weights. Each row of X corresponds to one +% input vector. +% +% This function is provided so that the common backpropagation +% algorithm can be used by RBF network models to compute gradients for +% the output values (in RBFDERIV) as well as standard error functions. +% +% See also +% RBF, RBFGRAD, RBFDERIV +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Evaluate second-layer gradients. +gw2 = z'*deltas; +gb2 = sum(deltas); + +% Evaluate hidden unit gradients +delhid = deltas*net.w2'; + +gc = zeros(net.nhidden, net.nin); +ndata = size(x, 1); +t1 = ones(ndata, 1); +t2 = ones(1, net.nin); +% Switch on activation function type +switch net.actfn + +case 'gaussian' % Gaussian + delhid = (delhid.*z); + % A loop seems essential, so do it with the shortest index vector + if (net.nin < net.nhidden) + for i = 1:net.nin + gc(:,i) = (sum(((x(:,i)*ones(1, net.nhidden)) - ... + (ones(ndata, 1)*(net.c(:,i)'))).*delhid, 1)./net.wi)'; + end + else + for i = 1:net.nhidden + gc(i,:) = sum((x - (t1*(net.c(i,:)))./net.wi(i)).*(delhid(:,i)*t2), 1); + end + end + gwi = sum((n2.*delhid)./(2.*(ones(ndata, 1)*(net.wi.^2))), 1); + +case 'tps' % Thin plate spline activation function + delhid = delhid.*(1+log(n2+(n2==0))); + for i = 1:net.nhidden + gc(i,:) = sum(2.*((t1*(net.c(i,:)) - x)).*(delhid(:,i)*t2), 1); + end + % widths are not adjustable in this model + gwi = []; +case 'r4logr' % r^4 log r activation function + delhid = delhid.*(n2.*(1+2.*log(n2+(n2==0)))); + for i = 1:net.nhidden + gc(i,:) = sum(2.*((t1*(net.c(i,:)) - x)).*(delhid(:,i)*t2), 1); + end + % widths are not adjustable in this model + gwi = []; +otherwise + error('Unknown activation function in rbfgrad') +end + +g = [gc(:)', gwi, gw2(:)', gb2];