Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/mdngrad.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/mdngrad.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,66 @@ +function g = mdngrad(net, x, t) +%MDNGRAD Evaluate gradient of error function for Mixture Density Network. +% +% Description +% G = MDNGRAD(NET, X, T) takes a mixture density network data +% structure NET, a matrix X of input vectors and a matrix T of target +% vectors, and evaluates the gradient G of the error function with +% respect to the network weights. The error function is negative log +% likelihood of the target data. Each row of X corresponds to one +% input vector and each row of T corresponds to one target vector. +% +% See also +% MDN, MDNFWD, MDNERR, MDNPROB, MLPBKP +% + +% Copyright (c) Ian T Nabney (1996-2001) +% David J Evans (1998) + +% Check arguments for consistency +errstring = consist(net, 'mdn', x, t); +if ~isempty(errstring) + error(errstring); +end + +[mixparams, y, z] = mdnfwd(net, x); + +% Compute gradients at MLP outputs: put the answer in deltas +ncentres = net.mdnmixes.ncentres; +dim_target = net.mdnmixes.dim_target; +nmixparams = net.mdnmixes.nparams; +ntarget = size(t, 1); +deltas = zeros(ntarget, net.mlp.nout); +e = ones(ncentres, 1); +f = ones(1, dim_target); + +post = mdnpost(mixparams, t); + +% Calculate prior derivatives +deltas(:,1:ncentres) = mixparams.mixcoeffs - post; + +% Calculate centre derivatives +long_t = kron(ones(1, ncentres), t); +centre_err = mixparams.centres - long_t; + +% Get the post to match each u_jk: +% this array will be (ntarget, (ncentres*dim_target)) +long_post = kron(ones(dim_target, 1), post); +long_post = reshape(long_post, ntarget, (ncentres*dim_target)); + +% Get the variance to match each u_jk: +var = mixparams.covars; +var = kron(ones(dim_target, 1), var); +var = reshape(var, ntarget, (ncentres*dim_target)); + +% Compute centre deltas +deltas(:, (ncentres+1):(ncentres*(1+dim_target))) = ... + (centre_err.*long_post)./var; + +% Compute variance deltas +dist2 = mdndist2(mixparams, t); +c = dim_target*ones(ntarget, ncentres); +deltas(:, (ncentres*(1+dim_target)+1):nmixparams) = ... + post.*((dist2./mixparams.covars)-c)./(-2); + +% Now back-propagate deltas through MLP +g = mlpbkp(net.mlp, x, z, deltas);