diff toolboxes/FullBNT-1.0.7/netlab3.3/linemin.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/FullBNT-1.0.7/netlab3.3/linemin.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,152 @@
+function [x, options] = linemin(f, pt, dir, fpt, options, ...
+	varargin)
+%LINEMIN One dimensional minimization.
+%
+%	Description
+%	[X, OPTIONS] = LINEMIN(F, PT, DIR, FPT, OPTIONS) uses Brent's
+%	algorithm to find the minimum of the function F(X) along the line DIR
+%	through the point PT.  The function value at the starting point is
+%	FPT.  The point at which F has a local minimum is returned as X.  The
+%	function value at that point is returned in OPTIONS(8).
+%
+%	LINEMIN(F, PT, DIR, FPT, OPTIONS, P1, P2, ...) allows  additional
+%	arguments to be passed to F().
+%
+%	The optional parameters have the following interpretations.
+%
+%	OPTIONS(1) is set to 1 to display error values.
+%
+%	OPTIONS(2) is a measure of the absolute precision required for the
+%	value of X at the solution.
+%
+%	OPTIONS(3) is a measure of the precision required of the objective
+%	function at the solution.  Both this and the previous condition must
+%	be satisfied for termination.
+%
+%	OPTIONS(14) is the maximum number of iterations; default 100.
+%
+%	See also
+%	CONJGRAD, MINBRACK, QUASINEW
+%
+
+%	Copyright (c) Ian T Nabney (1996-2001)
+
+% Set up the options.
+if(options(14))
+  niters = options(14);
+else
+  niters = 100;
+end
+options(10) = 0; % Initialise count of function evaluations
+
+display = options(1);
+
+% Check function string
+f = fcnchk(f, length(varargin));
+
+% Value of golden section (1 + sqrt(5))/2.0
+phi = 1.6180339887499;
+cphi = 1 - 1/phi;
+TOL = sqrt(eps);	% Maximal fractional precision
+TINY = 1.0e-10;         % Can't use fractional precision when minimum is at 0
+
+% Bracket the minimum
+[br_min, br_mid, br_max, num_evals] = feval('minbrack', 'linef', ...
+  0.0, 1.0, fpt, f, pt, dir, varargin{:});
+options(10) = options(10) + num_evals;  % Increment number of fn. evals
+					% No gradient evals in minbrack
+
+% Use Brent's algorithm to find minimum
+% Initialise the points and function values
+w = br_mid;   	% Where second from minimum is
+v = br_mid;   	% Previous value of w
+x = v;   	% Where current minimum is
+e = 0.0; 	% Distance moved on step before last
+fx = feval('linef', x, f, pt, dir, varargin{:});
+options(10) = options(10) + 1;
+fv = fx; fw = fx;
+
+for n = 1:niters
+  xm = 0.5.*(br_min+br_max);  % Middle of bracket
+  % Make sure that tolerance is big enough
+  tol1 = TOL * (max(abs(x))) + TINY;
+  % Decide termination on absolute precision required by options(2)
+  if (max(abs(x - xm)) <= options(2) & br_max-br_min < 4*options(2))
+    options(8) = fx;
+    return;
+  end
+  % Check if step before last was big enough to try a parabolic step.
+  % Note that this will fail on first iteration, which must be a golden
+  % section step.
+  if (max(abs(e)) > tol1)
+    % Construct a trial parabolic fit through x, v and w
+    r = (fx - fv) .* (x - w);
+    q = (fx - fw) .* (x - v);
+    p = (x - v).*q - (x - w).*r;
+    q = 2.0 .* (q - r);
+    if (q > 0.0) p = -p; end
+    q = abs(q);
+    % Test if the parabolic fit is OK
+    if (abs(p) >= abs(0.5*q*e) | p <= q*(br_min-x) | p >= q*(br_max-x))
+      % No it isn't, so take a golden section step
+      if (x >= xm)
+        e = br_min-x;
+      else
+        e = br_max-x;
+      end
+      d = cphi*e;
+    else
+      % Yes it is, so take the parabolic step
+      e = d;
+      d = p/q;
+      u = x+d;
+      if (u-br_min < 2*tol1 | br_max-u < 2*tol1)
+        d = sign(xm-x)*tol1;
+      end
+    end
+  else
+    % Step before last not big enough, so take a golden section step
+    if (x >= xm)
+      e = br_min - x;
+    else
+      e = br_max - x;
+    end
+    d = cphi*e;
+  end
+  % Make sure that step is big enough
+  if (abs(d) >= tol1)
+    u = x+d;
+  else
+    u = x + sign(d)*tol1;
+  end
+  % Evaluate function at u
+  fu = feval('linef', u, f, pt, dir, varargin{:});
+  options(10) = options(10) + 1;
+  % Reorganise bracket
+  if (fu <= fx)
+    if (u >= x)
+      br_min = x;
+    else
+      br_max = x;
+    end
+    v = w; w = x; x = u;
+    fv = fw; fw = fx; fx = fu;
+  else
+    if (u < x)
+      br_min = u;   
+    else
+      br_max = u;
+    end
+    if (fu <= fw | w == x)
+      v = w; w = u;
+      fv = fw; fw = fu;
+    elseif (fu <= fv | v == x | v == w)
+      v = u;
+      fv = fu;
+    end
+  end
+  if (display == 1)
+    fprintf(1, 'Cycle %4d  Error %11.6f\n', n, fx);
+  end
+end
+options(8) = fx;