Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/glmderiv.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/glmderiv.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,40 @@ +function g = glmderiv(net, x) +%GLMDERIV Evaluate derivatives of GLM outputs with respect to weights. +% +% Description +% G = GLMDERIV(NET, X) takes a network data structure NET and a matrix +% of input vectors X and returns a three-index matrix mat{g} whose I, +% J, K element contains the derivative of network output K with respect +% to weight or bias parameter J for input pattern I. The ordering of +% the weight and bias parameters is defined by GLMUNPAK. +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Check arguments for consistency +errstring = consist(net, 'glm', x); +if ~isempty(errstring) + error(errstring); +end + +ndata = size(x, 1); +if isfield(net, 'mask') + nwts = size(find(net.mask), 1); + mask_array = logical(net.mask)*ones(1, net.nout); +else + nwts = net.nwts; +end +g = zeros(ndata, nwts, net.nout); + +temp = zeros(net.nwts, net.nout); +for n = 1:ndata + % Weight matrix w1 + temp(1:(net.nin*net.nout), :) = kron(eye(net.nout), (x(n, :))'); + % Bias term b1 + temp(net.nin*net.nout+1:end, :) = eye(net.nout); + if isfield(net, 'mask') + g(n, :, :) = reshape(temp(find(mask_array)), nwts, net.nout); + else + g(n, :, :) = temp; + end +end