Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/demgmm2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/demgmm2.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,152 @@ +%DEMGMM1 Demonstrate density modelling with a Gaussian mixture model. +% +% Description +% The problem consists of modelling data generated by a mixture of +% three Gaussians in 2 dimensions. The priors are 0.3, 0.5 and 0.2; +% the centres are (2, 3.5), (0, 0) and (0,2); the variances are 0.2, +% 0.5 and 1.0. The first figure contains a scatter plot of the data. +% +% A Gaussian mixture model with three components is trained using EM. +% The parameter vector is printed before training and after training. +% The user should press any key to continue at these points. The +% parameter vector consists of priors (the column), centres (given as +% (x, y) pairs as the next two columns), and variances (the last +% column). +% +% The second figure is a 3 dimensional view of the density function, +% while the third shows the 1-standard deviation circles for the three +% components of the mixture model. +% +% See also +% GMM, GMMINIT, GMMEM, GMMPROB, GMMUNPAK +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Generate the data +% Fix seeds for reproducible results +randn('state', 42); +rand('state', 42); + +ndata = 500; +[data, datac, datap, datasd] = dem2ddat(ndata); + +clc +disp('This demonstration illustrates the use of a Gaussian mixture model') +disp('to approximate the unconditional probability density of data in') +disp('a two-dimensional space. We begin by generating the data from') +disp('a mixture of three Gaussians and plotting it.') +disp(' ') +disp('Press any key to continue') +pause + +fh1 = figure; +plot(data(:, 1), data(:, 2), 'o') +set(gca, 'Box', 'on') +% Set up mixture model +ncentres = 3; +input_dim = 2; +mix = gmm(input_dim, ncentres, 'spherical'); + +options = foptions; +options(14) = 5; % Just use 5 iterations of k-means in initialisation +% Initialise the model parameters from the data +mix = gmminit(mix, data, options); + +clc +disp('The data is drawn from a mixture with parameters') +disp(' Priors Centres Variances') +disp([datap' datac (datasd.^2)']) +disp(' ') +disp('The mixture model has three components and spherical covariance') +disp('matrices. The model parameters after initialisation using the') +disp('k-means algorithm are as follows') +% Print out model +disp(' Priors Centres Variances') +disp([mix.priors' mix.centres mix.covars']) +disp('Press any key to continue') +pause + +% Set up vector of options for EM trainer +options = zeros(1, 18); +options(1) = 1; % Prints out error values. +options(14) = 10; % Max. Number of iterations. + +disp('We now train the model using the EM algorithm for 10 iterations') +disp(' ') +disp('Press any key to continue') +pause +[mix, options, errlog] = gmmem(mix, data, options); + +% Print out model +disp(' ') +disp('The trained model has parameters ') +disp(' Priors Centres Variances') +disp([mix.priors' mix.centres mix.covars']) +disp('Note the close correspondence between these parameters and those') +disp('of the distribution used to generate the data, which are repeated here.') +disp(' Priors Centres Variances') +disp([datap' datac (datasd.^2)']) +disp(' ') +disp('Press any key to continue') +pause + +clc +disp('We now plot the density given by the mixture model as a surface plot') +disp(' ') +disp('Press any key to continue') +pause +% Plot the result +x = -4.0:0.2:5.0; +y = -4.0:0.2:5.0; +[X, Y] = meshgrid(x,y); +X = X(:); +Y = Y(:); +grid = [X Y]; +Z = gmmprob(mix, grid); +Z = reshape(Z, length(x), length(y)); +c = mesh(x, y, Z); +hold on +title('Surface plot of probability density') +hold off + +clc +disp('The final plot shows the centres and widths, given by one standard') +disp('deviation, of the three components of the mixture model.') +disp(' ') +disp('Press any key to continue.') +pause +% Try to calculate a sensible position for the second figure, below the first +fig1_pos = get(fh1, 'Position'); +fig2_pos = fig1_pos; +fig2_pos(2) = fig2_pos(2) - fig1_pos(4); +fh2 = figure; +set(fh2, 'Position', fig2_pos) + +hp1 = plot(data(:, 1), data(:, 2), 'bo'); +axis('equal'); +hold on +hp2 = plot(mix.centres(:, 1), mix.centres(:,2), 'g+'); +set(hp2, 'MarkerSize', 10); +set(hp2, 'LineWidth', 3); + +title('Plot of data and mixture centres') +angles = 0:pi/30:2*pi; +for i = 1 : mix.ncentres + x_circle = mix.centres(i,1)*ones(1, length(angles)) + ... + sqrt(mix.covars(i))*cos(angles); + y_circle = mix.centres(i,2)*ones(1, length(angles)) + ... + sqrt(mix.covars(i))*sin(angles); + plot(x_circle, y_circle, 'r') +end +hold off +disp('Note how the data cluster positions and widths are captured by') +disp('the mixture model.') +disp(' ') +disp('Press any key to end.') +pause + +close(fh1); +close(fh2); +clear all; +