Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/nethelp3.3/mdn.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/mdn.htm Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,84 @@ +<html> +<head> +<title> +Netlab Reference Manual mdn +</title> +</head> +<body> +<H1> mdn +</H1> +<h2> +Purpose +</h2> +Creates a Mixture Density Network with specified architecture. + +<p><h2> +Synopsis +</h2> +<PRE> +net = mdn(nin, nhidden, ncentres, dimtarget) +net = mdn(nin, nhidden, ncentres, dimtarget, mixtype, ... + prior, beta) +</PRE> + + +<p><h2> +Description +</h2> +<CODE>net = mdn(nin, nhidden, ncentres, dimtarget)</CODE> takes the number of +inputs, +hidden units for a 2-layer feed-forward +network and the number of centres and target dimension for the +mixture model whose parameters are set from the outputs of the neural network. +The fifth argument <CODE>mixtype</CODE> is used to define the type of mixture +model. (Currently there is only one type supported: a mixture of Gaussians with +a single covariance parameter for each component.) For this model, +the mixture coefficients are computed from a group of softmax outputs, +the centres are equal to a group of linear outputs, and the variances are +obtained by applying the exponential function to a third group of outputs. + +<p>The network is initialised by a call to <CODE>mlp</CODE>, and the arguments +<CODE>prior</CODE>, and <CODE>beta</CODE> have the same role as for that function. +Weight initialisation uses the Matlab function <CODE>randn</CODE> + and so the seed for the random weight initialization can be +set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the seed value. +A specialised data structure (rather than <CODE>gmm</CODE>) +is used for the mixture model outputs to improve +the efficiency of error and gradient calculations in network training. +The fields are described in <CODE>mdnfwd</CODE> where they are set up. + +<p>The fields in <CODE>net</CODE> are +<PRE> + + type = 'mdn' + nin = number of input variables + nout = dimension of target space (not number of network outputs) + nwts = total number of weights and biases + mdnmixes = data structure for mixture model output + mlp = data structure for MLP network +</PRE> + + +<p><h2> +Example +</h2> +<PRE> + +net = mdn(2, 4, 3, 1, 'spherical'); +</PRE> + +This creates a Mixture Density Network with 2 inputs and 4 hidden units. +The mixture model has 3 components and the target space has dimension 1. + +<p><h2> +See Also +</h2> +<CODE><a href="mdnfwd.htm">mdnfwd</a></CODE>, <CODE><a href="mdnerr.htm">mdnerr</a></CODE>, <CODE><a href="mdn2gmm.htm">mdn2gmm</a></CODE>, <CODE><a href="mdngrad.htm">mdngrad</a></CODE>, <CODE><a href="mdnpak.htm">mdnpak</a></CODE>, <CODE><a href="mdnunpak.htm">mdnunpak</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE><hr> +<b>Pages:</b> +<a href="index.htm">Index</a> +<hr> +<p>Copyright (c) Ian T Nabney (1996-9) +<p>David J Evans (1998) + +</body> +</html> \ No newline at end of file