Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/nethelp3.3/gmm.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/gmm.htm Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,96 @@ +<html> +<head> +<title> +Netlab Reference Manual gmm +</title> +</head> +<body> +<H1> gmm +</H1> +<h2> +Purpose +</h2> +Creates a Gaussian mixture model with specified architecture. + +<p><h2> +Synopsis +</h2> +<PRE> +mix = gmm(dim, ncentres, covartype) +mix = gmm(dim, ncentres, covartype, ppca_dim) +</PRE> + + +<p><h2> +Description +</h2> + +<CODE>mix = gmm(dim, ncentres, covartype)</CODE> takes +the dimension of the space <CODE>dim</CODE>, the number of centres in the +mixture model and the type of the mixture model, and returns a data +structure <CODE>mix</CODE>. +The mixture model type defines the covariance structure of each component +Gaussian: +<PRE> + + 'spherical' = single variance parameter for each component: stored as a vector + 'diag' = diagonal matrix for each component: stored as rows of a matrix + 'full' = full matrix for each component: stored as 3d array + 'ppca' = probabilistic PCA: stored as principal components (in a 3d array + and associated variances and off-subspace noise +</PRE> + +<CODE>mix = gmm(dim, ncentres, covartype, ppca_dim)</CODE> also sets the dimension of +the PPCA sub-spaces: the default value is one. + +<p>The priors are initialised to equal values summing to one, and the covariances +are all the identity matrix (or equivalent). The centres are +initialised randomly from a zero mean unit variance Gaussian. This makes use +of the MATLAB function <CODE>randn</CODE> and so the seed for the random weight +initialisation can be set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the +state value. + +<p>The fields in <CODE>mix</CODE> are +<PRE> + + type = 'gmm' + nin = the dimension of the space + ncentres = number of mixture components + covartype = string for type of variance model + priors = mixing coefficients + centres = means of Gaussians: stored as rows of a matrix + covars = covariances of Gaussians +</PRE> + +The additional fields for mixtures of PPCA are +<PRE> + + U = principal component subspaces + lambda = in-space covariances: stored as rows of a matrix +</PRE> + +The off-subspace noise is stored in <CODE>covars</CODE>. + +<p><h2> +Example +</h2> +<PRE> + +mix = gmm(2, 4, 'spherical'); +</PRE> + +This creates a Gaussian mixture model with 4 components in 2 dimensions. +The covariance structure is a spherical model. + +<p><h2> +See Also +</h2> +<CODE><a href="gmmpak.htm">gmmpak</a></CODE>, <CODE><a href="gmmunpak.htm">gmmunpak</a></CODE>, <CODE><a href="gmmsamp.htm">gmmsamp</a></CODE>, <CODE><a href="gmminit.htm">gmminit</a></CODE>, <CODE><a href="gmmem.htm">gmmem</a></CODE>, <CODE><a href="gmmactiv.htm">gmmactiv</a></CODE>, <CODE><a href="gmmpost.htm">gmmpost</a></CODE>, <CODE><a href="gmmprob.htm">gmmprob</a></CODE><hr> +<b>Pages:</b> +<a href="index.htm">Index</a> +<hr> +<p>Copyright (c) Ian T Nabney (1996-9) + + +</body> +</html> \ No newline at end of file