diff toolboxes/FullBNT-1.0.7/nethelp3.3/glmhess.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/glmhess.htm	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,74 @@
+<html>
+<head>
+<title>
+Netlab Reference Manual glmhess
+</title>
+</head>
+<body>
+<H1> glmhess
+</H1>
+<h2>
+Purpose
+</h2>
+Evaluate the Hessian matrix for a generalised linear model.
+
+<p><h2>
+Synopsis
+</h2>
+<PRE>
+h = glmhess(net, x, t)
+[h, hdata] = glmhess(net, x, t)
+h = glmhess(net, x, t, hdata)
+</PRE>
+
+
+<p><h2>
+Description
+</h2>
+<CODE>h = glmhess(net, x, t)</CODE> takes a GLM network data structure <CODE>net</CODE>,  
+a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of target
+values and returns the full Hessian matrix <CODE>h</CODE> corresponding to
+the second derivatives of the negative log posterior distribution,
+evaluated for the current weight and bias values as defined by
+<CODE>net</CODE>. Note that the target data is not required in the calculation,
+but is included to make the interface uniform with <CODE>nethess</CODE>.  For
+linear and logistic outputs, the computation is very simple and is 
+done (in effect) in one line in <CODE>glmtrain</CODE>.
+
+<p><CODE>[h, hdata] = glmhess(net, x, t)</CODE> returns both the Hessian matrix
+<CODE>h</CODE> and the contribution <CODE>hdata</CODE> arising from the data dependent
+term in the Hessian.
+
+<p><CODE>h = glmhess(net, x, t, hdata)</CODE> takes a network data structure
+<CODE>net</CODE>, a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of 
+target values, together with the contribution <CODE>hdata</CODE> arising from
+the data dependent term in the Hessian, and returns the full Hessian
+matrix <CODE>h</CODE> corresponding to the second derivatives of the negative
+log posterior distribution. This version saves computation time if
+<CODE>hdata</CODE> has already been evaluated for the current weight and bias
+values.
+
+<p><h2>
+Example
+</h2>
+The Hessian matrix is used by <CODE>glmtrain</CODE> to take a Newton step for
+softmax outputs.
+<PRE>
+
+Hessian = glmhess(net, x, t);
+deltaw = -gradient*pinv(Hessian);
+</PRE>
+
+
+<p><h2>
+See Also
+</h2>
+<CODE><a href="glm.htm">glm</a></CODE>, <CODE><a href="glmtrain.htm">glmtrain</a></CODE>, <CODE><a href="hesschek.htm">hesschek</a></CODE>, <CODE><a href="nethess.htm">nethess</a></CODE><hr>
+<b>Pages:</b>
+<a href="index.htm">Index</a>
+<hr>
+<p>Copyright (c) Ian T Nabney (1996-9)
+
+
+</body>
+</html>
\ No newline at end of file