Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/graph/mk_nbrs_of_digraph_broken.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/graph/mk_nbrs_of_digraph_broken.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,111 @@ +function [Gs, op, nodes] = mk_nbrs_of_digraph(G0) +% MK_NBRS_OF_DIGRAPH Make all digraphs that differ from G0 by a single edge deletion, addition or reversal +% [Gs, op, nodes] = mk_nbrs_of_digraph(G0) +% +% Gs(:,:,i) is the i'th neighbor +% op{i} = 'add', 'del', or 'rev' is the operation used to create the i'th neighbor. +% nodes(i,1:2) are the head and tail of the operated-on arc. + +debug = 0; % the vectorized version is about 3 to 10 times faster + +n = length(G0); +[I,J] = find(G0); % I(k), J(k) is the k'th edge +E = length(I); % num edges present in G0 + +% SINGLE EDGE DELETIONS + +Grep = repmat(G0(:), 1, E); % each column is a copy of G0 +% edge_ndx(k) is the scalar location of the k'th edge +edge_ndx = find(G0); +% edge_ndx = subv2ind([n n], [I J]); % equivalent +% We set (ndx(k), k) to 0 for k=1:E in Grep +ndx = subv2ind(size(Grep), [edge_ndx(:) (1:E)']); +G1 = Grep; +G1(ndx) = 0; +Gdel = reshape(G1, [n n E]); + + +% if debug +% % Non-vectorized version +% ctr = 1; +% for e=1:E +% i = I(e); j = J(e); +% Gdel2(:,:,ctr) = G0; +% Gdel2(i,j,ctr) = 0; +% ctr = ctr + 1; +% end +% assert(isequal(Gdel, Gdel2)); +% end + + +% SINGLE EDGE REVERSALS + +% rev_edge_ndx(k) is the scalar location of the k'th reversed edge +%rev_edge_ndx = find(G0'); % different order to edge_ndx, which is bad +rev_edge_ndx = subv2ind([n n], [J I]); +% We set (rev_edge_ndx(k), k) to 1 for k=1:E in G1 +% We have already deleted i->j in the previous step +ndx = subv2ind(size(Grep), [rev_edge_ndx(:) (1:E)']); +G1(ndx) = 1; +Grev = reshape(G1, [n n E]); + +% if debug +% % Non-vectorized version +% ctr = 1; +% for e=1:E +% i = I(e); j = J(e); +% Grev2(:,:,ctr) = G0; +% Grev2(i,j,ctr) = 0; +% Grev2(j,i,ctr) = 1; +% ctr = ctr + 1; +% end +% assert(isequal(Grev, Grev2)); +% end + + +% SINGLE EDGE ADDITIONS + +Gbar = ~G0; % Gbar(i,j)=1 iff there is no i->j edge in G0 +Gbar = setdiag(Gbar, 0); % turn off self loops +[Ibar,Jbar] = find(Gbar); + +bar_edge_ndx = find(Gbar); +Ebar = length(Ibar); % num edges present in Gbar +Grep = repmat(G0(:), 1, Ebar); % each column is a copy of G0 +ndx = subv2ind(size(Grep), [bar_edge_ndx(:) (1:Ebar)']); +Grep(ndx) = 1; +Gadd = reshape(Grep, [n n Ebar]); + +% if debug +% % Non-vectorized version +% ctr = 1; +% for e=1:length(Ibar) +% i = Ibar(e); j = Jbar(e); +% Gadd2(:,:,ctr) = G0; +% Gadd2(i,j,ctr) = 1; +% ctr = ctr + 1; +% end +% assert(isequal(Gadd, Gadd2)); +% end + + +Gs = cat(3, Gdel, Grev, Gadd); + +nodes = [I J; + I J; + Ibar Jbar]; + +op = cell(1, E+E+Ebar); +op(1:E) = {'del'}; +op(E+1:2*E) = {'rev'}; +op(2*E+1:end) = {'add'}; + + +% numeric output: +% op(i) = 1, 2, or 3, if the i'th neighbor was created by adding, deleting or reversing an arc. + +ADD = 1; +DEL = 2; +REV = 3; + +%op = [repmat(DEL, 1, E) repmat(REV, 1, E) repmat(ADD, 1, Ebar)];