Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/general/mk_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/general/mk_dbn.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,133 @@ +function bnet = mk_dbn(intra, inter, node_sizes, varargin) +% MK_DBN Make a Dynamic Bayesian Network. +% +% BNET = MK_DBN(INTRA, INTER, NODE_SIZES, ...) makes a DBN with arcs +% from i in slice t to j in slice t iff intra(i,j) = 1, and +% from i in slice t to j in slice t+1 iff inter(i,j) = 1, +% for i,j in {1, 2, ..., n}, where n = num. nodes per slice, and t >= 1. +% node_sizes(i) is the number of values node i can take on. +% The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. +% See also mk_bnet. +% +% Optional arguments [default in brackets] +% 'discrete' - list of discrete nodes [1:n] +% 'observed' - the list of nodes which will definitely be observed in every slice of every case [ [] ] +% 'eclass1' - equiv class for slice 1 [1:n] +% 'eclass2' - equiv class for slice 2 [tie nodes with equivalent parents to slice 1] +% equiv_class1(i) = j means node i in slice 1 gets its parameters from bnet.CPD{j}, +% i.e., nodes i and j have tied parameters. +% 'intra1' - topology of first slice, if different from others +% 'names' - a cell array of strings to be associated with nodes 1:n [{}] +% This creates an associative array, so you write e.g. +% 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42' +% assuming names = { 'foo', 'bar', ...}. +% +% For backwards compatibility with BNT2, arguments can also be specified as follows +% bnet = mk_dbn(intra, inter, node_sizes, dnodes, eclass1, eclass2, intra1) +% +% After calling this function, you must specify the parameters (conditional probability +% distributions) using bnet.CPD{i} = gaussian_CPD(...) or tabular_CPD(...) etc. + + +n = length(intra); +ss = n; +bnet.nnodes_per_slice = ss; +bnet.intra = intra; +bnet.inter = inter; +bnet.intra1 = intra; +dag = zeros(2*n); +dag(1:n,1:n) = bnet.intra1; +dag(1:n,(1:n)+n) = bnet.inter; +dag((1:n)+n,(1:n)+n) = bnet.intra; +bnet.dag = dag; +bnet.names = {}; + +directed = 1; +if ~acyclic(dag,directed) + error('graph must be acyclic') +end + + +bnet.eclass1 = 1:n; +%bnet.eclass2 = (1:n)+n; +bnet.eclass2 = bnet.eclass1; +for i=1:ss + if isequal(parents(dag, i+ss), parents(dag, i)+ss) + %fprintf('%d has isomorphic parents, eclass %d\n', i, bnet.eclass2(i)) + else + bnet.eclass2(i) = max(bnet.eclass2) + 1; + %fprintf('%d has non isomorphic parents, eclass %d\n', i, bnet.eclass2(i)) + end +end + +dnodes = 1:n; +bnet.observed = []; + +if nargin >= 4 + args = varargin; + nargs = length(args); + if ~isstr(args{1}) + if nargs >= 1, dnodes = args{1}; end + if nargs >= 2, bnet.eclass1 = args{2}; end + if nargs >= 3, bnet.eclass2 = args{3}; end + if nargs >= 4, bnet.intra1 = args{4}; end + else + for i=1:2:nargs + switch args{i}, + case 'discrete', dnodes = args{i+1}; + case 'observed', bnet.observed = args{i+1}; + case 'eclass1', bnet.eclass1 = args{i+1}; + case 'eclass2', bnet.eclass2 = args{i+1}; + case 'intra1', bnet.intra1 = args{i+1}; + %case 'ar_hmm', bnet.ar_hmm = args{i+1}; % should check topology + case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n)); + otherwise, + error(['invalid argument name ' args{i}]); + end + end + end +end + + +bnet.observed = sort(bnet.observed); % for comparing sets +ns = node_sizes; +bnet.node_sizes_slice = ns(:)'; +bnet.node_sizes = [ns(:) ns(:)]; + +cnodes = mysetdiff(1:n, dnodes); +bnet.dnodes_slice = dnodes; +bnet.cnodes_slice = cnodes; +bnet.dnodes = [dnodes dnodes+n]; +bnet.cnodes = [cnodes cnodes+n]; + +bnet.equiv_class = [bnet.eclass1(:) bnet.eclass2(:)]; +bnet.CPD = cell(1,max(bnet.equiv_class(:))); +eclass = bnet.equiv_class(:); +E = max(eclass); +bnet.rep_of_eclass = zeros(1,E); +for e=1:E + mems = find(eclass==e); + bnet.rep_of_eclass(e) = mems(1); +end + +ss = n; +onodes = bnet.observed; +hnodes = mysetdiff(1:ss, onodes); +bnet.hidden_bitv = zeros(1,2*ss); +bnet.hidden_bitv(hnodes) = 1; +bnet.hidden_bitv(hnodes+ss) = 1; + +bnet.parents = cell(1, 2*ss); +for i=1:ss + bnet.parents{i} = parents(bnet.dag, i); + bnet.parents{i+ss} = parents(bnet.dag, i+ss); +end + +bnet.auto_regressive = zeros(1,ss); +% ar(i)=1 means (observed) node i depends on i in the previous slice +for o=bnet.observed(:)' + if any(bnet.parents{o+ss} <= ss) + bnet.auto_regressive(o) = 1; + end +end +