Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/static/mixexp2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/static/mixexp2.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,104 @@ +% Fit a piece-wise linear regression model. +% Here is the model +% +% X \ +% | | +% Q | +% | / +% Y +% +% where all arcs point down. +% We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian. +% Q is hidden, X and Y are observed. + +X = 1; +Q = 2; +Y = 3; +dag = zeros(3,3); +dag(X,[Q Y]) = 1; +dag(Q,Y) = 1; +ns = [1 2 1]; % make X and Y scalars, and have 2 experts +dnodes = [2]; +onodes = [1 3]; +bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes); + +IRLS_iter = 10; +clamped = 0; + +bnet.CPD{1} = root_CPD(bnet, 1); + +if 0 + % start with good initial params + w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary + b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary + + mu = [0 0]; + sigma = 1; + Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]); + W = [-1 1]; + W2 = reshape(W, [ns(Y) ns(X) ns(Q)]); + + bnet.CPD{2} = softmax_CPD(bnet, 2, w, b, clamped, IRLS_iter); + bnet.CPD{3} = gaussian_CPD(bnet, 3, mu, Sigma, W2); +else + % start with rnd initial params + rand('state', 0); + randn('state', 0); + bnet.CPD{2} = softmax_CPD(bnet, 2, 'clamped', clamped, 'max_iter', IRLS_iter); + bnet.CPD{3} = gaussian_CPD(bnet, 3); +end + + + +load('/examples/static/Misc/mixexp_data.txt', '-ascii'); +% Just use 1/10th of the data, to speed things up +data = mixexp_data(1:10:end, :); +%data = mixexp_data; + +%plot(data(:,1), data(:,2), '.') + + +s = struct(bnet.CPD{2}); % violate object privacy +%eta0 = [s.glim.b1; s.glim.w1]'; +eta0 = [s.glim{1}.b1; s.glim{1}.w1]'; +s = struct(bnet.CPD{3}); % violate object privacy +W = reshape(s.weights, [1 2]); +theta0 = [s.mean; W]'; + +%figure(1) +%mixexp_plot(theta0, eta0, data); +%suptitle('before learning') + +ncases = size(data, 1); +cases = cell(3, ncases); +cases([1 3], :) = num2cell(data'); + +engine = jtree_inf_engine(bnet); + +% log lik before learning +ll = 0; +for l=1:ncases + ev = cases(:,l); + [engine, loglik] = enter_evidence(engine, ev); + ll = ll + loglik; +end + +% do learning +max_iter = 5; +[bnet2, LL2] = learn_params_em(engine, cases, max_iter); + +s = struct(bnet2.CPD{2}); +%eta2 = [s.glim.b1; s.glim.w1]'; +eta2 = [s.glim{1}.b1; s.glim{1}.w1]'; +s = struct(bnet2.CPD{3}); +W = reshape(s.weights, [1 2]); +theta2 = [s.mean; W]'; + +%figure(2) +%mixexp_plot(theta2, eta2, data); +%suptitle('after learning') + +fprintf('mixexp2: loglik before learning %f, after %d iters %f\n', ll, length(LL2), LL2(end)); + + +