Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/static/cg1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/static/cg1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,86 @@ +% Conditional Gaussian network +% The waste incinerator emissions example from Lauritzen (1992), +% "Propogation of Probabilities, Means and Variances in Mixed Graphical Association Models", +% JASA 87(420): 1098--1108 +% +% This example is reprinted on p145 of "Probabilistic Networks and Expert Systems", +% Cowell, Dawid, Lauritzen and Spiegelhalter, 1999, Springer. +% +% For a picture, see http://www.cs.berkeley.edu/~murphyk/Bayes/usage.html#cg_model + +ns = 2*ones(1,9); +%bnet = mk_incinerator_bnet(ns); +bnet = mk_incinerator_bnet; + +engines = {}; +%engines{end+1} = stab_cond_gauss_inf_engine(bnet); +engines{end+1} = jtree_inf_engine(bnet); +engines{end+1} = cond_gauss_inf_engine(bnet); +nengines = length(engines); + +F = 1; W = 2; E = 3; B = 4; C = 5; D = 6; Min = 7; Mout = 8; L = 9; +n = 9; +dnodes = [B F W]; +cnodes = mysetdiff(1:n, dnodes); + +evidence = cell(1,n); % no evidence +ll = zeros(1, nengines); +for e=1:nengines + [engines{e}, ll(e)] = enter_evidence(engines{e}, evidence); +end +%assert(approxeq(ll(1), ll))) +ll + +% Compare to the results in table on p1107. +% These results are printed to 3dp in Cowell p150 + +mu = zeros(1,n); +sigma = zeros(1,n); +dprob = zeros(1,n); +addev = 1; +tol = 1e-2; +for e=1:nengines + for i=cnodes(:)' + m = marginal_nodes(engines{e}, i, addev); + mu(i) = m.mu; + sigma(i) = sqrt(m.Sigma); + end + for i=dnodes(:)' + m = marginal_nodes(engines{e}, i, addev); + dprob(i) = m.T(1); + end + assert(approxeq(mu([E D C L Min Mout]), [-3.25 3.04 -1.85 1.48 -0.214 2.83], tol)) + assert(approxeq(sigma([E D C L Min Mout]), [0.709 0.770 0.507 0.631 0.459 0.860], tol)) + assert(approxeq(dprob([B F W]), [0.85 0.95 0.29], tol)) + %m = marginal_nodes(engines{e}, bnet.names('E'), addev); + %assert(approxeq(m.mu, -3.25, tol)) + %assert(approxeq(sqrt(m.Sigma), 0.709, tol)) +end + +% Add evidence (p 1105, top right) +evidence = cell(1,n); +evidence{W} = 1; % industrial +evidence{L} = 1.1; +evidence{C} = -0.9; + +ll = zeros(1, nengines); +for e=1:nengines + [engines{e}, ll(e)] = enter_evidence(engines{e}, evidence); +end +assert(all(approxeq(ll(1), ll))) + +for e=1:nengines + for i=cnodes(:)' + m = marginal_nodes(engines{e}, i, addev); + mu(i) = m.mu; + sigma(i) = sqrt(m.Sigma); + end + for i=dnodes(:)' + m = marginal_nodes(engines{e}, i, addev); + dprob(i) = m.T(1); + end + assert(approxeq(mu([E D C L Min Mout]), [-3.90 3.61 -0.9 1.1 0.5 4.11], tol)) + assert(approxeq(sigma([E D C L Min Mout]), [0.076 0.326 0 0 0.1 0.344], tol)) + assert(approxeq(dprob([B F W]), [0.0122 0.9995 1], tol)) +end +