Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_fhmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_fhmm.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,58 @@ +function bnet = mk_fhmm(N, Q, Y, discrete_obs) +% MK_FHMM Make a factorial Hidden Markov Model +% +% There are N independent parallel hidden chains, each connected to the output +% +% e.g., N = 2 (vertical/diagonal edges point down) +% +% A1--->A2 +% | B1--|->B2 +% | / |/ +% Y1 Y2 +% +% [bnet, onode] = mk_chmm(n, q, y, discrete_obs) +% +% Each hidden node is discrete and has Q values. +% If discrete_obs = 1, each observed node is discrete and has values 1..Y. +% If discrete_obs = 0, each observed node is a Gaussian vector of length Y. + +if nargin < 2, Q = 2; end +if nargin < 3, Y = 2; end +if nargin < 4, discrete_obs = 1; end + +ss = N+1; +hnodes = 1:N; +onode = N+1; + +intra = zeros(ss); +intra(hnodes, onode) = 1; + +inter = eye(ss); +inter(onode,onode) = 0; + +ns = [Q*ones(1,N) Y]; + +eclass1 = [hnodes onode]; +eclass2 = [hnodes+ss onode]; +if discrete_obs + dnodes = 1:ss; +else + dnodes = hnodes; +end +bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... + 'observed', onode); + +for i=hnodes(:)' + bnet.CPD{i} = tabular_CPD(bnet, i); +end +i = onode; +if discrete_obs + bnet.CPD{i} = tabular_CPD(bnet, i); +else + bnet.CPD{i} = gaussian_CPD(bnet, i); +end +for i=hnodes(:)'+ss + bnet.CPD{i} = tabular_CPD(bnet, i); +end + +