Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/CPDs/@mlp_CPD/update_ess.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/CPDs/@mlp_CPD/update_ess.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,131 @@ +function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv) +% UPDATE_ESS Update the Expected Sufficient Statistics of a CPD (MLP) +% CPD = update_ess(CPD, family_marginal, evidence, node_sizes, cnodes, hidden_bitv) +% +% fmarginal = overall posterior distribution of self and its parents +% fmarginal(i1,i2...,ik,s)=prob(Pa1=i1,...,Pak=ik, self=s| X) +% +% => 1) prob(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) with prob(Pa1,...,Pak)=sum{s,fmarginal} +% [self estimation -> CPD.self_vals] +% 2) prob(Pa1,...,Pak) [SCG weights -> CPD.eso_weights] +% +% Hidden_bitv is ignored + +% Written by Pierpaolo Brutti + +if ~adjustable_CPD(CPD), return; end + +dom = fmarginal.domain; +cdom = myintersect(dom, cnodes); +assert(~any(isemptycell(evidence(cdom)))); +ns(cdom)=1; + +self = dom(end); +ps=dom(1:end-1); +dpdom=mysetdiff(ps,cdom); + +dnodes = mysetdiff(1:length(ns), cnodes); + +ddom = myintersect(ps, dnodes); % +if isempty(evidence{self}), % if self is hidden in what follow we must + ddom = myintersect(dom, dnodes); % consider its dimension +end % + +odom = dom(~isemptycell(evidence(dom))); +hdom = dom(isemptycell(evidence(dom))); % hidden parents in domain + +dobs = myintersect(ddom, odom); +dvals = cat(1, evidence{dobs}); +ens = ns; % effective node sizes +ens(dobs) = 1; + +dpsz=prod(ns(dpdom)); +S=prod(ens(ddom)); +subs = ind2subv(ens(ddom), 1:S); +mask = find_equiv_posns(dobs, ddom); +for i=1:length(mask), + subs(:,mask(i)) = dvals(i); +end +supportedQs = subv2ind(ns(ddom), subs); + +Qarity = prod(ns(ddom)); +if isempty(ddom), + Qarity = 1; +end +fullm.T = zeros(Qarity, 1); +fullm.T(supportedQs) = fmarginal.T(:); + +% For dynamic (recurrent) net------------------------------------------------------------- +% ---------------------------------------------------------------------------------------- +high=size(evidence,1); % slice height +ss_ns=ns(1:high); % single slice nodes sizes +pos=self; % +slice_num=0; % +while pos>high, % + slice_num=slice_num+1; % find active slice + pos=pos-high; % pos=self posistion into a single slice +end % + +last_dim=pos-1; % +if isempty(evidence{self}), % + last_dim=pos; % +end % last_dim=last reshaping dimension +reg=dom-slice_num*high; +dex=myintersect(reg(find(reg>=0)), [1:last_dim]); % +rs_dim=ss_ns(dex); % reshaping dimensions + +if slice_num>0, + act_slice=[]; past_ancest=[]; % + act_slice=slice_num*high+[1:high]; % recover the active slice nodes + % past_ancest=mysetdiff(ddom, act_slice); + past_ancest=mysetdiff(ps, act_slice); % recover ancestors contained into past slices + app=ns(past_ancest); + rs_dim=[app(:)' rs_dim(:)']; % +end % +if length(rs_dim)==1, rs_dim=[1 rs_dim]; end % +if size(rs_dim,1)~=1, rs_dim=rs_dim'; end % + +fullm.T=reshape(fullm.T, rs_dim); % reshaping the marginal + +% ---------------------------------------------------------------------------------------- +% ---------------------------------------------------------------------------------------- + +% X = cts parent, R = discrete self + +% 1) observations vector -> CPD.parents_vals ------------------------------------------------- +x = cat(1, evidence{cdom}); + +% 2) weights vector -> CPD.eso_weights ------------------------------------------------------- +if isempty(evidence{self}) % R is hidden + sum_over=length(rs_dim); + app=sum(fullm.T, sum_over); + pesi=reshape(app,[dpsz,1]); + clear app; +else + pesi=reshape(fullm.T,[dpsz,1]); +end + +assert(approxeq(sum(pesi),1)); + +% 3) estimate (if R is hidden) or recover (if R is obs) self'value---------------------------- +if isempty(evidence{self}) % R is hidden + app=mk_stochastic(fullm.T); % P(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) + app=reshape(app,[dpsz ns(self)]); % matrix size: prod{j,ns(Paj)} x ns(self) + r=app; + clear app; +else + r = zeros(dpsz,ns(self)); + for i=1:dpsz + if pesi(i)~=0, r(i,evidence{self}) = 1; end + end +end +for i=1:dpsz + if pesi(i) ~=0, assert(approxeq(sum(r(i,:)),1)); end +end + +CPD.nsamples = CPD.nsamples + 1; +CPD.parent_vals(CPD.nsamples,:) = x(:)'; +for i=1:dpsz + CPD.eso_weights(CPD.nsamples,:,i)=pesi(i); + CPD.self_vals(CPD.nsamples,:,i) = r(i,:); +end