Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/learn_params.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/learn_params.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,31 @@ +function CPD = learn_params(CPD, fam, data, ns, cnodes) +%function CPD = learn_params(CPD, fam, data, ns, cnodes) +% LEARN_PARAMS Compute the maximum likelihood estimate of the params of a gaussian CPD given complete data +% CPD = learn_params(CPD, fam, data, ns, cnodes) +% +% data(i,m) is the value of node i in case m (can be cell array). +% We assume this node has a maximize_params method. + +ncases = size(data, 2); +CPD = reset_ess(CPD); +% make a fully observed joint distribution over the family +fmarginal.domain = fam; +fmarginal.T = 1; +fmarginal.mu = []; +fmarginal.Sigma = []; +if ~iscell(data) + cases = num2cell(data); +else + cases = data; +end +hidden_bitv = zeros(1, max(fam)); +for m=1:ncases + % specify (as a bit vector) which elements in the family domain are hidden + hidden_bitv = zeros(1, max(fmarginal.domain)); + ev = cases(:,m); + hidden_bitv(find(isempty(ev)))=1; + CPD = update_ess(CPD, fmarginal, ev, ns, cnodes, hidden_bitv); +end +CPD = maximize_params(CPD); + +