Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMstats/linear_regression.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMstats/linear_regression.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,68 @@ +function [muY, SigmaY, weightsY] = linear_regression(X, Y, varargin) +% LINEAR_REGRESSION Fit params for P(Y|X) = N(Y; W X + mu, Sigma) +% +% X(:, t) is the t'th input example +% Y(:, t) is the t'th output example +% +% Kevin Murphy, August 2003 +% +% This is a special case of cwr_em with 1 cluster. +% You can also think of it as a front end to clg_Mstep. + +[cov_typeY, clamp_weights, muY, SigmaY, weightsY,... + cov_priorY, regress, clamp_covY] = process_options(... + varargin, ... + 'cov_typeY', 'full', 'clamp_weights', 0, ... + 'muY', [], 'SigmaY', [], 'weightsY', [], ... + 'cov_priorY', [], 'regress', 1, 'clamp_covY', 0); + +[nx N] = size(X); +[ny N2] = size(Y); +if N ~= N2 + error(sprintf('nsamples X (%d) ~= nsamples Y (%d)', N, N2)); +end + +w = 1/N; +WYbig = Y*w; +WYY = WYbig * Y'; +WY = sum(WYbig, 2); +WYTY = sum(diag(WYbig' * Y)); +if ~regress + % This is just fitting an unconditional Gaussian + weightsY = []; + [muY, SigmaY] = ... + mixgauss_Mstep(1, WY, WYY, WYTY, ... + 'cov_type', cov_typeY, 'cov_prior', cov_priorY); + % There is a much easier way... + assert(approxeq(muY, mean(Y'))) + assert(approxeq(SigmaY, cov(Y') + 0.01*eye(ny))) +else + % This is just linear regression + WXbig = X*w; + WXX = WXbig * X'; + WX = sum(WXbig, 2); + WXTX = sum(diag(WXbig' * X)); + WXY = WXbig * Y'; + [muY, SigmaY, weightsY] = ... + clg_Mstep(1, WY, WYY, WYTY, WX, WXX, WXY, ... + 'cov_type', cov_typeY, 'cov_prior', cov_priorY); +end +if clamp_covY, SigmaY = SigmaY; end +if clamp_weights, weightsY = weightsY; end + +if nx==1 & ny==1 & regress + P = polyfit(X,Y); % Y = P(1) X^1 + P(2) X^0 = ax + b + assert(approxeq(muY, P(2))) + assert(approxeq(weightsY, P(1))) +end + +%%%%%%%% Test +if 0 + c1 = randn(2,100); c2 = randn(2,100); + y = c2(1,:); X = [ones(size(c1,2),1) c1']; + b = regress(y(:), X); % stats toolbox + [m,s,w] = linear_regression(c1, y); + assert(approxeq(b(1),m)) + assert(approxeq(b(2), w(1))) + assert(approxeq(b(3), w(2))) +end