Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMstats/cwr_em.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMstats/cwr_em.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,161 @@ +function cwr = cwr_em(X, Y, nc, varargin) +% CWR_LEARN Fit the parameters of a cluster weighted regression model using EM +% function cwr = cwr_learn(X, Y, ...) +% +% X(:, t) is the t'th input example +% Y(:, t) is the t'th output example +% nc is the number of clusters +% +% Kevin Murphy, May 2003 + +[max_iter, thresh, cov_typeX, cov_typeY, clamp_weights, ... + muX, muY, SigmaX, SigmaY, weightsY, priorC, create_init_params, ... +cov_priorX, cov_priorY, verbose, regress, clamp_covX, clamp_covY] = process_options(... + varargin, 'max_iter', 10, 'thresh', 1e-2, 'cov_typeX', 'full', ... + 'cov_typeY', 'full', 'clamp_weights', 0, ... + 'muX', [], 'muY', [], 'SigmaX', [], 'SigmaY', [], 'weightsY', [], 'priorC', [], ... + 'create_init_params', 1, 'cov_priorX', [], 'cov_priorY', [], 'verbose', 0, ... + 'regress', 1, 'clamp_covX', 0, 'clamp_covY', 0); + +[nx N] = size(X); +[ny N2] = size(Y); +if N ~= N2 + error(sprintf('nsamples X (%d) ~= nsamples Y (%d)', N, N2)); +end +%if N < nx +% fprintf('cwr_em warning: dim X (%d) > nsamples X (%d)\n', nx, N); +%end +if (N < nx) & regress + fprintf('cwr_em warning: dim X = %d, nsamples X = %d\n', nx, N); +end +if (N < ny) + fprintf('cwr_em warning: dim Y = %d, nsamples Y = %d\n', ny, N); +end +if (nc > N) + error(sprintf('cwr_em: more centers (%d) than data', nc)) +end + +if nc==1 + % No latent variable, so there is a closed-form solution + w = 1/N; + WYbig = Y*w; + WYY = WYbig * Y'; + WY = sum(WYbig, 2); + WYTY = sum(diag(WYbig' * Y)); + cwr.priorC = 1; + cwr.SigmaX = []; + if ~regress + % This is just fitting an unconditional Gaussian + cwr.weightsY = []; + [cwr.muY, cwr.SigmaY] = ... + mixgauss_Mstep(1, WY, WYY, WYTY, ... + 'cov_type', cov_typeY, 'cov_prior', cov_priorY); + % There is a much easier way... + assert(approxeq(cwr.muY, mean(Y'))) + assert(approxeq(cwr.SigmaY, cov(Y') + 0.01*eye(ny))) + else + % This is just linear regression + WXbig = X*w; + WXX = WXbig * X'; + WX = sum(WXbig, 2); + WXTX = sum(diag(WXbig' * X)); + WXY = WXbig * Y'; + [cwr.muY, cwr.SigmaY, cwr.weightsY] = ... + clg_Mstep(1, WY, WYY, WYTY, WX, WXX, WXY, ... + 'cov_type', cov_typeY, 'cov_prior', cov_priorY); + end + if clamp_covY, cwr.SigmaY = SigmaY; end + if clamp_weights, cwr.weightsY = weightsY; end + return; +end + + +if create_init_params + [cwr.muX, cwr.SigmaX] = mixgauss_init(nc, X, cov_typeX); + [cwr.muY, cwr.SigmaY] = mixgauss_init(nc, Y, cov_typeY); + cwr.weightsY = zeros(ny, nx, nc); + cwr.priorC = normalize(ones(nc,1)); +else + cwr.muX = muX; cwr.muY = muY; cwr.SigmaX = SigmaX; cwr.SigmaY = SigmaY; + cwr.weightsY = weightsY; cwr.priorC = priorC; +end + + +if clamp_covY, cwr.SigmaY = SigmaY; end +if clamp_covX, cwr.SigmaX = SigmaX; end +if clamp_weights, cwr.weightsY = weightsY; end + +previous_loglik = -inf; +num_iter = 1; +converged = 0; + +while (num_iter <= max_iter) & ~converged + + % E step + + [likXandY, likYgivenX, post] = cwr_prob(cwr, X, Y); + loglik = sum(log(likXandY)); + % extract expected sufficient statistics + w = sum(post,2); % post(c,t) + WYY = zeros(ny, ny, nc); + WY = zeros(ny, nc); + WYTY = zeros(nc,1); + + WXX = zeros(nx, nx, nc); + WX = zeros(nx, nc); + WXTX = zeros(nc, 1); + WXY = zeros(nx,ny,nc); + %WYY = repmat(reshape(w, [1 1 nc]), [ny ny 1]) .* repmat(Y*Y', [1 1 nc]); + for c=1:nc + weights = repmat(post(c,:), ny, 1); + WYbig = Y .* weights; + WYY(:,:,c) = WYbig * Y'; + WY(:,c) = sum(WYbig, 2); + WYTY(c) = sum(diag(WYbig' * Y)); + + weights = repmat(post(c,:), nx, 1); % weights(nx, nsamples) + WXbig = X .* weights; + WXX(:,:,c) = WXbig * X'; + WX(:,c) = sum(WXbig, 2); + WXTX(c) = sum(diag(WXbig' * X)); + WXY(:,:,c) = WXbig * Y'; + end + + % M step + % Q -> X is called Q->Y in Mstep_clg + [cwr.muX, cwr.SigmaX] = mixgauss_Mstep(w, WX, WXX, WXTX, ... + 'cov_type', cov_typeX, 'cov_prior', cov_priorX); + for c=1:nc + assert(is_psd(cwr.SigmaX(:,:,c))) + end + + if clamp_weights % affects estimate of mu and Sigma + W = cwr.weightsY; + else + W = []; + end + [cwr.muY, cwr.SigmaY, cwr.weightsY] = ... + clg_Mstep(w, WY, WYY, WYTY, WX, WXX, WXY, ... + 'cov_type', cov_typeY, 'clamped_weights', W, ... + 'cov_prior', cov_priorY); + %'xs', X, 'ys', Y, 'post', post); % debug + %a = linspace(min(Y(2,:)), max(Y(2,:)), nc+2); + %cwr.muY(2,:) = a(2:end-1); + + cwr.priorC = normalize(w); + + for c=1:nc + assert(is_psd(cwr.SigmaY(:,:,c))) + end + + if clamp_covY, cwr.SigmaY = SigmaY; end + if clamp_covX, cwr.SigmaX = SigmaX; end + if clamp_weights, cwr.weightsY = weightsY; end + + if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end + num_iter = num_iter + 1; + converged = em_converged(loglik, previous_loglik, thresh); + previous_loglik = loglik; + +end +