comparison toolboxes/distance_learning/mlr/util/soft_classify.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function Ypredict = soft_classify(W, test_k, Xtrain, Ytrain, Xtest, Testnorm)
2 % Ypredict = soft_classify(W, test_k, Xtrain, Ytrain, Xtest, Testnorm)
3 %
4 % W = d-by-d positive semi-definite matrix
5 % test_k = k-value to use for KNN
6 % Xtrain = d-by-n matrix of training data
7 % Ytrain = n-by-1 vector of training labels
8 % Xtest = d-by-m matrix of testing data
9 % Testnorm= m-by-#kernels vector of k(i,i) for each i in test
10 %
11
12 addpath('cuttingPlane', 'distance', 'feasible', 'initialize', 'loss', ...
13 'metricPsi', 'regularize', 'separationOracle', 'util');
14
15 [d, nTrain, nKernel] = size(Xtrain);
16 nTest = size(Xtest, 2);
17 test_k = min(test_k, nTrain);
18
19 if nargin < 7
20 Testnorm = [];
21 end
22
23 % Build the distance matrix
24 [D, I] = mlr_test_distance(W, Xtrain, Xtest, Testnorm);
25
26 % Compute label agreement
27 Ypredict = histc(Ytrain(I(1:test_k,:)), unique(Ytrain)');
28
29 end
30
31
32 function [D,I] = mlr_test_distance(W, Xtrain, Xtest, Testnorm)
33
34 % CASES:
35 % Raw: W = []
36
37 % Linear, full: W = d-by-d
38 % Single Kernel, full: W = n-by-n
39 % MKL, full: W = n-by-n-by-m
40
41 % Linear, diagonal: W = d-by-1
42 % Single Kernel, diagonal: W = n-by-1
43 % MKL, diag: W = n-by-m
44 % MKL, diag-off-diag: W = m-by-m-by-n
45
46 [d, nTrain, nKernel] = size(Xtrain);
47 nTest = size(Xtest, 2);
48
49 if isempty(W)
50 % W = [] => native euclidean distances
51 D = mlr_test_distance_raw(Xtrain, Xtest, Testnorm);
52
53 elseif size(W,1) == d && size(W,2) == d
54 % We're in a full-projection case
55 D = setDistanceFullMKL([Xtrain Xtest], W, nTrain + (1:nTest), 1:nTrain);
56
57 elseif size(W,1) == d && size(W,2) == nKernel
58 % We're in a simple diagonal case
59 D = setDistanceDiagMKL([Xtrain Xtest], W, nTrain + (1:nTest), 1:nTrain);
60
61 elseif size(W,1) == nKernel && size(W,2) == nKernel && size(W,3) == nTrain
62 % We're in DOD mode
63 D = setDistanceDODMKL([Xtrain Xtest], W, nTrain + (1:nTest), 1:nTrain);
64
65 else
66 % Error?
67 error('Cannot determine metric mode.');
68
69 end
70
71 D = full(D(1:nTrain, nTrain + (1:nTest)));
72 [v,I] = sort(D, 1);
73 end
74
75
76
77 function D = mlr_test_distance_raw(Xtrain, Xtest, Testnorm)
78
79 [d, nTrain, nKernel] = size(Xtrain);
80 nTest = size(Xtest, 2);
81
82 if isempty(Testnorm)
83 % Not in kernel mode, compute distances directly
84 D = 0;
85 for i = 1:nKernel
86 D = D + setDistanceDiag([Xtrain(:,:,i) Xtest(:,:,i)], ones(d,1), ...
87 nTrain + (1:nTest), 1:nTrain);
88 end
89 else
90 % We are in kernel mode
91 D = sparse(nTrain + nTest, nTrain + nTest);
92 for i = 1:nKernel
93 Trainnorm = diag(Xtrain(:,:,i));
94 D(1:nTrain, nTrain + (1:nTest)) = D(1:nTrain, nTrain + (1:nTest)) ...
95 + bsxfun(@plus, Trainnorm, bsxfun(@plus, Testnorm(:,i)', -2 * Xtest(:,:,i)));
96 end
97 end
98 end
99