comparison toolboxes/distance_learning/mlr/separationOracle/separationOracleAUC.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [Y, Loss] = separationOracleAUC(q, D, pos, neg, k)
2 %
3 % [Y,Loss] = separationOracleAUC(q, D, pos, neg, k)
4 %
5 % q = index of the query point
6 % D = the current distance matrix
7 % pos = indices of relevant results for q
8 % neg = indices of irrelevant results for q
9 % k = length of the list to consider (unused in AUC)
10 %
11 % Y is a permutation 1:n corresponding to the maximally
12 % violated constraint
13 %
14 % Loss is the loss for Y, in this case, 1-AUC(Y)
15
16
17 % First, sort the documents in descending order of W'Phi(q,x)
18 % Phi = - (X(q) - X(x)) * (X(q) - X(x))'
19
20 % Sort the positive documents
21 ScorePos = - D(pos,q);
22 [Vpos, Ipos] = sort(full(ScorePos'), 'descend');
23 Ipos = pos(Ipos);
24
25 % Sort the negative documents
26 ScoreNeg = - D(neg,q);
27 [Vneg, Ineg] = sort(full(ScoreNeg'), 'descend');
28 Ineg = neg(Ineg);
29
30
31 % How many pos and neg documents are we using here?
32 numPos = length(pos);
33 numNeg = length(neg);
34 n = numPos + numNeg;
35
36
37 NegsBefore = sum(bsxfun(@lt, Vpos, Vneg' + 0.5),1);
38
39 % Construct Y from NegsBefore
40 Y = nan * ones(n,1);
41 Y((1:numPos) + NegsBefore) = Ipos;
42 Y(isnan(Y)) = Ineg;
43
44 % Compute AUC loss for this ranking
45 Loss = 1 - sum(NegsBefore) / (numPos * numNeg * 2);
46 end
47