Mercurial > hg > camir-aes2014
comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/som_vis_coords.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function unit_coord=som_vis_coords(lattice, msize) | |
2 | |
3 %SOM_VIS_COORDS Unit coordinates used in visualizations. | |
4 % | |
5 % Co = som_vis_coords(lattice, msize) | |
6 % | |
7 % Co = som_vis_coords('hexa',[10 7]) | |
8 % Co = som_vis_coords('rectU',[10 7]) | |
9 % | |
10 % Input and output arguments: | |
11 % lattice (string) 'hexa', 'rect', 'hexaU' or 'rectU' | |
12 % msize (vector) grid size in a 1x2 vector | |
13 % | |
14 % Co (matrix) Mx2 matrix of unit coordinates, where | |
15 % M=prod(msize) for 'hexa' and 'rect', and | |
16 % M=(2*msize(1)-1)*(2*msize(2)-1) for 'hexaU' and 'rectU' | |
17 % | |
18 % This function calculates the coordinates of map units on a 'sheet' | |
19 % shaped map with either 'hexa' or 'rect' lattice as used in the | |
20 % visualizations. Note that this slightly different from the | |
21 % coordinates provided by SOM_UNIT_COORDS function. | |
22 % | |
23 % 'rectU' and 'hexaU' gives the coordinates of both units and the | |
24 % connections for u-matrix visualizations. | |
25 % | |
26 % For more help, try 'type som_vis_coords' or check out online documentation. | |
27 % See also SOM_UNIT_COORDS, SOM_UMAT, SOM_CPLANE, SOM_GRID. | |
28 | |
29 %%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
30 % | |
31 % PURPOSE | |
32 % | |
33 % Returns coordinates of the map units for map visualization | |
34 % | |
35 % SYNTAX | |
36 % | |
37 % Co = som_vis_coords(lattice, msize) | |
38 % | |
39 % DESCRIPTION | |
40 % | |
41 % This function calculates the coordinates of map units in 'hexa' and | |
42 % 'rect' lattices in 'sheet' shaped map for visualization purposes. It | |
43 % differs from SOM_UNIT_COORDS in the sense that hexagonal lattice is | |
44 % calculated in a "wrong" way in order to get integer coordinates for | |
45 % the units. Another difference is that it may be used to calculate | |
46 % the coordinates of units _and_ the center points of the lines | |
47 % connecting them (edges) by using 'hexaU' or 'rectU' for lattice. | |
48 % This property may be used for drawing u-matrices. | |
49 % | |
50 % The unit number 1 is set to (ij) coordinates (1,1)+shift | |
51 % 2 (2,1)+shift | |
52 % | |
53 % ... columnwise | |
54 % | |
55 % n-1th (n1-1,n2)+shift | |
56 % nth (n1,n2)+shift | |
57 % | |
58 % where grid size = [n1 n2] and shift is zero, except for | |
59 % the even lines of 'hexa' lattice, for which it is +0.5. | |
60 % | |
61 % For 'rectU' and 'hexaU' the unit coordinates are the same and the | |
62 % coordinates for connections are set according to these. In this case | |
63 % the ordering of the coordinates is the following: | |
64 % let | |
65 % U = som_umat(sMap); U=U(:); % make U a column vector | |
66 % Uc = som_vis_coords(sMap.topol.lattice, sMap.topol.msize); | |
67 % now the kth row of matrix Uc, i.e. Uc(k,:), contains the coordinates | |
68 % for value U(k). | |
69 % | |
70 % REQUIRED INPUT ARGUMENTS | |
71 % | |
72 % lattice (string) The local topology of the units: | |
73 % 'hexa', 'rect', 'hexaU' or 'rectU' | |
74 % msize (vector) size 1x2, defining the map grid size. | |
75 % Notice that only 2-dimensional grids | |
76 % are allowed. | |
77 % | |
78 % OUTPUT ARGUMENTS | |
79 % | |
80 % Co (matrix) size Mx2, giving the coordinates for each unit. | |
81 % M=prod(msize) for 'hexa' and 'rect', and | |
82 % M=(2*msize(1)-1)*(2*msize(2)-1) for 'hexaU' and 'rectU' | |
83 % | |
84 % FEATURES | |
85 % | |
86 % Only 'sheet' shaped maps are considered. If coordinates for 'toroid' | |
87 % or 'cyl' topologies are required, you must use SOM_UNIT_COORDS | |
88 % instead. | |
89 % | |
90 % EXAMPLES | |
91 % | |
92 % Though this is mainly a subroutine for visualizations it may be | |
93 % used, e.g., in the following manner: | |
94 % | |
95 % % This makes a hexagonal lattice, where the units are rectangular | |
96 % % instead of hexagons. | |
97 % som_cplane('rect',som_vis_coords('hexa',[10 7]),'none'); | |
98 % | |
99 % % Let's make a map and calculate a u-matrix: | |
100 % sM=som_make(data,'msize',[10 7],'lattice','hexa'); | |
101 % u=som_umat(sM); u=u(:); | |
102 % % Now, these produce equivalent results: | |
103 % som_cplane('hexaU',[10 7],u); | |
104 % som_cplane(vis_patch('hexa')/2,som_vis_coords('hexaU',[10 7]),u); | |
105 % | |
106 % SEE ALSO | |
107 % | |
108 % som_grid Visualization of a SOM grid | |
109 % som_cplane Visualize a 2D component plane, u-matrix or color plane | |
110 % som_barplane Visualize the map prototype vectors as bar diagrams | |
111 % som_plotplane Visualize the map prototype vectors as line graphs | |
112 % som_pieplane Visualize the map prototype vectors as pie charts | |
113 % som_unit_coords Locations of units on the SOM grid | |
114 | |
115 % Copyright (c) 1999-2000 by the SOM toolbox programming team. | |
116 % http://www.cis.hut.fi/projects/somtoolbox/ | |
117 | |
118 % Version 2.0beta Johan 201099 juuso 261199 | |
119 | |
120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
121 | |
122 if ~vis_valuetype(msize,{'1x2'}), | |
123 error('msize must be a 1x2 vector.') | |
124 end | |
125 | |
126 if vis_valuetype(lattice,{'string'}) | |
127 switch lattice | |
128 case {'hexa', 'rect'} | |
129 munits=prod(msize); | |
130 unit_coord(:,1)=reshape(repmat([1:msize(2)],msize(1),1),1,munits)'; | |
131 unit_coord(:,2)=repmat([1:msize(1)]',msize(2),1); | |
132 if strcmp(lattice,'hexa') | |
133 % Move even rows by .5 | |
134 d=rem(unit_coord(:,2),2) == 0; | |
135 unit_coord(d,1)=unit_coord(d,1)+.5; | |
136 end | |
137 case {'hexaU','rectU'} | |
138 msize=2*msize-1; munits=prod(msize); | |
139 unit_coord(:,1)=reshape(repmat([1:msize(2)],msize(1),1),1,munits)'; | |
140 unit_coord(:,2)=repmat([1:msize(1)]',msize(2),1); | |
141 if strcmp(lattice,'hexaU') | |
142 d=rem(unit_coord(:,2),2) == 0; | |
143 unit_coord(d,1)=unit_coord(d,1)+.5; | |
144 d=rem(unit_coord(:,2)+1,4) == 0; | |
145 unit_coord(d,1)=unit_coord(d,1)+1; | |
146 end | |
147 unit_coord=unit_coord/2+.5; | |
148 otherwise | |
149 error([ 'Unknown lattice ''' lattice '''.']); | |
150 end | |
151 else | |
152 error('Lattice must be a string.'); | |
153 end |