comparison toolboxes/MIRtoolbox1.3.2/somtoolbox/som_umat.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function U = som_umat(sMap, varargin)
2
3 %SOM_UMAT Compute unified distance matrix of self-organizing map.
4 %
5 % U = som_umat(sMap, [argID, value, ...])
6 %
7 % U = som_umat(sMap);
8 % U = som_umat(M,sTopol,'median','mask',[1 1 0 1]);
9 %
10 % Input and output arguments ([]'s are optional):
11 % sMap (struct) map struct or
12 % (matrix) the codebook matrix of the map
13 % [argID, (string) See below. The values which are unambiguous can
14 % value] (varies) be given without the preceeding argID.
15 %
16 % U (matrix) u-matrix of the self-organizing map
17 %
18 % Here are the valid argument IDs and corresponding values. The values which
19 % are unambiguous (marked with '*') can be given without the preceeding argID.
20 % 'mask' (vector) size dim x 1, weighting factors for different
21 % components (same as BMU search mask)
22 % 'msize' (vector) map grid size
23 % 'topol' *(struct) topology struct
24 % 'som_topol','sTopol' = 'topol'
25 % 'lattice' *(string) map lattice, 'hexa' or 'rect'
26 % 'mode' *(string) 'min','mean','median','max', default is 'median'
27 %
28 % NOTE! the U-matrix is always calculated for 'sheet'-shaped map and
29 % the map grid must be at most 2-dimensional.
30 %
31 % For more help, try 'type som_umat' or check out online documentation.
32 % See also SOM_SHOW, SOM_CPLANE.
33
34 %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 % som_umat
37 %
38 % PURPOSE
39 %
40 % Computes the unified distance matrix of a SOM.
41 %
42 % SYNTAX
43 %
44 % U = som_umat(sM)
45 % U = som_umat(...,'argID',value,...)
46 % U = som_umat(...,value,...)
47 %
48 % DESCRIPTION
49 %
50 % Compute and return the unified distance matrix of a SOM.
51 % For example a case of 5x1 -sized map:
52 % m(1) m(2) m(3) m(4) m(5)
53 % where m(i) denotes one map unit. The u-matrix is a 9x1 vector:
54 % u(1) u(1,2) u(2) u(2,3) u(3) u(3,4) u(4) u(4,5) u(5)
55 % where u(i,j) is the distance between map units m(i) and m(j)
56 % and u(k) is the mean (or minimum, maximum or median) of the
57 % surrounding values, e.g. u(3) = (u(2,3) + u(3,4))/2.
58 %
59 % Note that the u-matrix is always calculated for 'sheet'-shaped map and
60 % the map grid must be at most 2-dimensional.
61 %
62 % REFERENCES
63 %
64 % Ultsch, A., Siemon, H.P., "Kohonen's Self-Organizing Feature Maps
65 % for Exploratory Data Analysis", in Proc. of INNC'90,
66 % International Neural Network Conference, Dordrecht,
67 % Netherlands, 1990, pp. 305-308.
68 % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag,
69 % Berlin, 1995, pp. 117-119.
70 % Iivarinen, J., Kohonen, T., Kangas, J., Kaski, S., "Visualizing
71 % the Clusters on the Self-Organizing Map", in proceedings of
72 % Conference on Artificial Intelligence Research in Finland,
73 % Helsinki, Finland, 1994, pp. 122-126.
74 % Kraaijveld, M.A., Mao, J., Jain, A.K., "A Nonlinear Projection
75 % Method Based on Kohonen's Topology Preserving Maps", IEEE
76 % Transactions on Neural Networks, vol. 6, no. 3, 1995, pp. 548-559.
77 %
78 % REQUIRED INPUT ARGUMENTS
79 %
80 % sM (struct) SOM Toolbox struct or the codebook matrix of the map.
81 % (matrix) The matrix may be 3-dimensional in which case the first
82 % two dimensions are taken for the map grid dimensions (msize).
83 %
84 % OPTIONAL INPUT ARGUMENTS
85 %
86 % argID (string) Argument identifier string (see below).
87 % value (varies) Value for the argument (see below).
88 %
89 % The optional arguments are given as 'argID',value -pairs. If the
90 % value is unambiguous, it can be given without the preceeding argID.
91 % If an argument is given value multiple times, the last one is used.
92 %
93 % Below is the list of valid arguments:
94 % 'mask' (vector) mask to be used in calculating
95 % the interunit distances, size [dim 1]. Default is
96 % the one in sM (field sM.mask) or a vector of
97 % ones if only a codebook matrix was given.
98 % 'topol' (struct) topology of the map. Default is the one
99 % in sM (field sM.topol).
100 % 'sTopol','som_topol' (struct) = 'topol'
101 % 'msize' (vector) map grid dimensions
102 % 'lattice' (string) map lattice 'rect' or 'hexa'
103 % 'mode' (string) 'min', 'mean', 'median' or 'max'
104 % Map unit value computation method. In fact,
105 % eval-function is used to evaluate this, so
106 % you can give other computation methods as well.
107 % Default is 'median'.
108 %
109 % OUTPUT ARGUMENTS
110 %
111 % U (matrix) the unified distance matrix of the SOM
112 % size 2*n1-1 x 2*n2-1, where n1 = msize(1) and n2 = msize(2)
113 %
114 % EXAMPLES
115 %
116 % U = som_umat(sM);
117 % U = som_umat(sM.codebook,sM.topol,'median','mask',[1 1 0 1]);
118 % U = som_umat(rand(10,10,4),'hexa','rect');
119 %
120 % SEE ALSO
121 %
122 % som_show show the selected component planes and the u-matrix
123 % som_cplane draw a 2D unified distance matrix
124
125 % Copyright (c) 1997-2000 by the SOM toolbox programming team.
126 % http://www.cis.hut.fi/projects/somtoolbox/
127
128 % Version 1.0beta juuso 260997
129 % Version 2.0beta juuso 151199, 151299, 200900
130
131 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
132 %% check arguments
133
134 error(nargchk(1, Inf, nargin)); % check no. of input arguments is correct
135
136 % sMap
137 if isstruct(sMap),
138 M = sMap.codebook;
139 sTopol = sMap.topol;
140 mask = sMap.mask;
141 elseif isnumeric(sMap),
142 M = sMap;
143 si = size(M);
144 dim = si(end);
145 if length(si)>2, msize = si(1:end-1);
146 else msize = [si(1) 1];
147 end
148 munits = prod(msize);
149 sTopol = som_set('som_topol','msize',msize,'lattice','rect','shape','sheet');
150 mask = ones(dim,1);
151 M = reshape(M,[munits,dim]);
152 end
153 mode = 'median';
154
155 % varargin
156 i=1;
157 while i<=length(varargin),
158 argok = 1;
159 if ischar(varargin{i}),
160 switch varargin{i},
161 % argument IDs
162 case 'mask', i=i+1; mask = varargin{i};
163 case 'msize', i=i+1; sTopol.msize = varargin{i};
164 case 'lattice', i=i+1; sTopol.lattice = varargin{i};
165 case {'topol','som_topol','sTopol'}, i=i+1; sTopol = varargin{i};
166 case 'mode', i=i+1; mode = varargin{i};
167 % unambiguous values
168 case {'hexa','rect'}, sTopol.lattice = varargin{i};
169 case {'min','mean','median','max'}, mode = varargin{i};
170 otherwise argok=0;
171 end
172 elseif isstruct(varargin{i}) & isfield(varargin{i},'type'),
173 switch varargin{i}(1).type,
174 case 'som_topol', sTopol = varargin{i};
175 case 'som_map', sTopol = varargin{i}.topol;
176 otherwise argok=0;
177 end
178 else
179 argok = 0;
180 end
181 if ~argok,
182 disp(['(som_umat) Ignoring invalid argument #' num2str(i+1)]);
183 end
184 i = i+1;
185 end
186
187 % check
188 [munits dim] = size(M);
189 if prod(sTopol.msize)~=munits,
190 error('Map grid size does not match the number of map units.')
191 end
192 if length(sTopol.msize)>2,
193 error('Can only handle 1- and 2-dimensional map grids.')
194 end
195 if prod(sTopol.msize)==1,
196 warning('Only one codebook vector.'); U = []; return;
197 end
198 if ~strcmp(sTopol.shape,'sheet'),
199 disp(['The ' sTopol.shape ' shape of the map ignored. Using sheet instead.']);
200 end
201
202 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
203 %% initialize variables
204
205 y = sTopol.msize(1);
206 x = sTopol.msize(2);
207 lattice = sTopol.lattice;
208 shape = sTopol.shape;
209 M = reshape(M,[y x dim]);
210
211 ux = 2 * x - 1;
212 uy = 2 * y - 1;
213 U = zeros(uy, ux);
214
215 calc = sprintf('%s(a)',mode);
216
217 if size(mask,2)>1, mask = mask'; end
218
219 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
220 %% u-matrix computation
221
222 % distances between map units
223
224 if strcmp(lattice, 'rect'), % rectangular lattice
225
226 for j=1:y, for i=1:x,
227 if i<x,
228 dx = (M(j,i,:) - M(j,i+1,:)).^2; % horizontal
229 U(2*j-1,2*i) = sqrt(mask'*dx(:));
230 end
231 if j<y,
232 dy = (M(j,i,:) - M(j+1,i,:)).^2; % vertical
233 U(2*j,2*i-1) = sqrt(mask'*dy(:));
234 end
235 if j<y & i<x,
236 dz1 = (M(j,i,:) - M(j+1,i+1,:)).^2; % diagonals
237 dz2 = (M(j+1,i,:) - M(j,i+1,:)).^2;
238 U(2*j,2*i) = (sqrt(mask'*dz1(:))+sqrt(mask'*dz2(:)))/(2 * sqrt(2));
239 end
240 end
241 end
242
243 elseif strcmp(lattice, 'hexa') % hexagonal lattice
244
245 for j=1:y,
246 for i=1:x,
247 if i<x,
248 dx = (M(j,i,:) - M(j,i+1,:)).^2; % horizontal
249 U(2*j-1,2*i) = sqrt(mask'*dx(:));
250 end
251
252 if j<y, % diagonals
253 dy = (M(j,i,:) - M(j+1,i,:)).^2;
254 U(2*j,2*i-1) = sqrt(mask'*dy(:));
255
256 if rem(j,2)==0 & i<x,
257 dz= (M(j,i,:) - M(j+1,i+1,:)).^2;
258 U(2*j,2*i) = sqrt(mask'*dz(:));
259 elseif rem(j,2)==1 & i>1,
260 dz = (M(j,i,:) - M(j+1,i-1,:)).^2;
261 U(2*j,2*i-2) = sqrt(mask'*dz(:));
262 end
263 end
264 end
265 end
266
267 end
268
269 % values on the units
270
271 if (uy == 1 | ux == 1),
272 % in 1-D case, mean is equal to median
273
274 ma = max([ux uy]);
275 for i = 1:2:ma,
276 if i>1 & i<ma,
277 a = [U(i-1) U(i+1)];
278 U(i) = eval(calc);
279 elseif i==1, U(i) = U(i+1);
280 else U(i) = U(i-1); % i==ma
281 end
282 end
283
284 elseif strcmp(lattice, 'rect')
285
286 for j=1:2:uy,
287 for i=1:2:ux,
288 if i>1 & j>1 & i<ux & j<uy, % middle part of the map
289 a = [U(j,i-1) U(j,i+1) U(j-1,i) U(j+1,i)];
290 elseif j==1 & i>1 & i<ux, % upper edge
291 a = [U(j,i-1) U(j,i+1) U(j+1,i)];
292 elseif j==uy & i>1 & i<ux, % lower edge
293 a = [U(j,i-1) U(j,i+1) U(j-1,i)];
294 elseif i==1 & j>1 & j<uy, % left edge
295 a = [U(j,i+1) U(j-1,i) U(j+1,i)];
296 elseif i==ux & j>1 & j<uy, % right edge
297 a = [U(j,i-1) U(j-1,i) U(j+1,i)];
298 elseif i==1 & j==1, % top left corner
299 a = [U(j,i+1) U(j+1,i)];
300 elseif i==ux & j==1, % top right corner
301 a = [U(j,i-1) U(j+1,i)];
302 elseif i==1 & j==uy, % bottom left corner
303 a = [U(j,i+1) U(j-1,i)];
304 elseif i==ux & j==uy, % bottom right corner
305 a = [U(j,i-1) U(j-1,i)];
306 else
307 a = 0;
308 end
309 U(j,i) = eval(calc);
310 end
311 end
312
313 elseif strcmp(lattice, 'hexa')
314
315 for j=1:2:uy,
316 for i=1:2:ux,
317 if i>1 & j>1 & i<ux & j<uy, % middle part of the map
318 a = [U(j,i-1) U(j,i+1)];
319 if rem(j-1,4)==0, a = [a, U(j-1,i-1) U(j-1,i) U(j+1,i-1) U(j+1,i)];
320 else a = [a, U(j-1,i) U(j-1,i+1) U(j+1,i) U(j+1,i+1)]; end
321 elseif j==1 & i>1 & i<ux, % upper edge
322 a = [U(j,i-1) U(j,i+1) U(j+1,i-1) U(j+1,i)];
323 elseif j==uy & i>1 & i<ux, % lower edge
324 a = [U(j,i-1) U(j,i+1)];
325 if rem(j-1,4)==0, a = [a, U(j-1,i-1) U(j-1,i)];
326 else a = [a, U(j-1,i) U(j-1,i+1)]; end
327 elseif i==1 & j>1 & j<uy, % left edge
328 a = U(j,i+1);
329 if rem(j-1,4)==0, a = [a, U(j-1,i) U(j+1,i)];
330 else a = [a, U(j-1,i) U(j-1,i+1) U(j+1,i) U(j+1,i+1)]; end
331 elseif i==ux & j>1 & j<uy, % right edge
332 a = U(j,i-1);
333 if rem(j-1,4)==0, a=[a, U(j-1,i) U(j-1,i-1) U(j+1,i) U(j+1,i-1)];
334 else a = [a, U(j-1,i) U(j+1,i)]; end
335 elseif i==1 & j==1, % top left corner
336 a = [U(j,i+1) U(j+1,i)];
337 elseif i==ux & j==1, % top right corner
338 a = [U(j,i-1) U(j+1,i-1) U(j+1,i)];
339 elseif i==1 & j==uy, % bottom left corner
340 if rem(j-1,4)==0, a = [U(j,i+1) U(j-1,i)];
341 else a = [U(j,i+1) U(j-1,i) U(j-1,i+1)]; end
342 elseif i==ux & j==uy, % bottom right corner
343 if rem(j-1,4)==0, a = [U(j,i-1) U(j-1,i) U(j-1,i-1)];
344 else a = [U(j,i-1) U(j-1,i)]; end
345 else
346 a=0;
347 end
348 U(j,i) = eval(calc);
349 end
350 end
351 end
352
353 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
354 %% normalization between [0,1]
355
356 % U = U - min(min(U));
357 % ma = max(max(U)); if ma > 0, U = U / ma; end
358
359 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
360
361
362