Mercurial > hg > camir-aes2014
comparison toolboxes/MIRtoolbox1.3.2/MIRToolbox/mirbeatspectrum.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function varargout = mirbeatspectrum(orig,varargin) | |
2 % n = mirbeatspectrum(m) evaluates the beat spectrum. | |
3 % [n,m] = mirbeatspectrum(m) also return the similarity matrix on which | |
4 % the estimation is made. | |
5 % Optional argument: | |
6 % mirbeatspectrum(...,s) specifies the estimation method. | |
7 % Possible values: | |
8 % s = 'Diag', summing simply along the diagonals of the matrix. | |
9 % s = 'Autocor', based on the autocorrelation of the matrix. | |
10 % mirbeatspectrum(...,'Distance',f) specifies the name of a dissimilarity | |
11 % distance function, from those proposed in the Statistics Toolbox | |
12 % (help pdist). | |
13 % default value: f = 'cosine' | |
14 % J. Foote, M. Cooper, U. Nam, "Audio Retrieval by Rhythmic Similarity", | |
15 % ISMIR 2002. | |
16 | |
17 | |
18 dist.key = 'Distance'; | |
19 dist.type = 'String'; | |
20 dist.default = 'cosine'; | |
21 option.dist = dist; | |
22 | |
23 meth.type = 'String'; | |
24 meth.choice = {'Diag','Autocor'}; | |
25 meth.default = 'Autocor'; | |
26 option.meth = meth; | |
27 | |
28 specif.option = option; | |
29 varargout = mirfunction(@mirbeatspectrum,orig,varargin,nargout,specif,@init,@main); | |
30 | |
31 | |
32 function [x type] = init(x,option) | |
33 if not(isamir(x,'mirscalar')) | |
34 if isamir(x,'miraudio') | |
35 x = mirmfcc(x,'frame',.025,'s',.01,'s','Rank',8:30); | |
36 end | |
37 x = mirsimatrix(x,'Distance',option.dist,'Similarity'); | |
38 end | |
39 type = 'mirscalar'; | |
40 | |
41 | |
42 function y = main(orig,option,postoption) | |
43 if iscell(orig) | |
44 orig = orig{1}; | |
45 end | |
46 fp = get(orig,'FramePos'); | |
47 if not(isa(orig,'mirscalar')) | |
48 s = get(orig,'Data'); | |
49 total = cell(1,length(s)); | |
50 for k = 1:length(s) | |
51 for h = 1:length(s{k}) | |
52 maxfp = find(fp{k}{h}(2,:)>4,1); | |
53 if isempty(maxfp) | |
54 maxfp = Inf; | |
55 else | |
56 fp{k}{h}(:,maxfp+1:end) = []; | |
57 end | |
58 l = min(length(s{k}{h}),maxfp); | |
59 total{k}{h} = zeros(1,l); | |
60 if strcmpi(option.meth,'Diag') | |
61 for i = 1:l | |
62 total{k}{h}(i) = mean(diag(s{k}{h},i-1)); | |
63 end | |
64 else | |
65 for i = 1:l | |
66 total{k}{h}(i) = mean(mean(s{k}{h}(:,1:l-i+1).*s{k}{h}(:,i:l))); | |
67 end | |
68 end | |
69 end | |
70 end | |
71 else | |
72 total = get(orig,'Data'); | |
73 end | |
74 n = mirscalar(orig,'Data',total,'FramePos',fp,'Title','Beat Spectrum'); | |
75 y = {n orig}; |