comparison toolboxes/FullBNT-1.0.7/netlabKPM/gmmem2.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [mix, num_iter, ll] = gmmem_kpm(mix, x, varargin)
2 %GMMEM_KPM Like GMMEM, but with additional optional arguments
3 % function [mix, num_iter, ll] = gmmem_kpm(mix, x, varargin)
4 %
5 % Input:
6 % mix - structure created by gmminit or gmmem_multi_restart
7 % data - each row is an example
8 %
9 % Output:
10 % mix - modified structure
11 % num_iter - number of iterations needed to reach convergence
12 % ll - final log likelihood
13 %
14 % [ ... ] = gmmem_kpm(..., 'param1',val1, 'param2',val2, ...) allows you to
15 % specify optional parameter name/value pairs.
16 % Parameters are below [default value in brackets]
17 %
18 % 'max_iter' - maximum number of EM iterations [10]
19 % 'll_thresh' - change in log-likelihood threshold for convergence [1e-2]
20 % 'verbose' - 1 means display output while running [0]
21 % 'prior_cov' - this will be added to each estimated covariance
22 % to prevent singularities [1e-3*eye(d)]
23 % 'fn' - this function, if non-empty, will be called at every iteration
24 % (e.g., to display the parameters as they evolve) [ [] ]
25 % The fn is called as fn(mix, x, iter_num, fnargs).
26 % It is also called before the iteration starts as
27 % fn(mix, x, -1, fnargs), which can be used to initialize things.
28 % 'fnargs' - additional arguments to be passed to fn [ {} ]
29 %
30 % Modified by Kevin P Murphy, 29 Dec 2002
31
32
33 % Check that inputs are consistent
34 errstring = consist(mix, 'gmm', x);
35 if ~isempty(errstring)
36 error(errstring);
37 end
38
39 [ndata, xdim] = size(x);
40
41 [max_iter, ll_thresh, verbose, prior_cov, fn, fnargs] = ...
42 process_options(varargin, ...
43 'max_iter', 10, 'll_thresh', 1e-2, 'verbose', 1, ...
44 'prior_cov', 1e-3*eye(xdim), 'fn', [], 'fnargs', {});
45
46 options = foptions;
47 if verbose, options(1)=1; else options(1)=-1; end
48 options(14) = max_iter;
49 options(3) = ll_thresh;
50
51
52 % Sort out the options
53 if (options(14))
54 niters = options(14);
55 else
56 niters = 100;
57 end
58
59 display = options(1);
60 test = 0;
61 if options(3) > 0.0
62 test = 1; % Test log likelihood for termination
63 end
64
65 check_covars = 0;
66 if options(5) >= 1
67 if display >= 0
68 disp('check_covars is on');
69 end
70 check_covars = 1; % Ensure that covariances don't collapse
71 MIN_COVAR = eps; % Minimum singular value of covariance matrix
72 init_covars = mix.covars;
73 end
74
75 mix0 = mix; % save init values for debugging
76
77 if ~isempty(fn)
78 feval(fn, mix, x, -1, fnargs{:});
79 end
80
81 % Main loop of algorithm
82 for n = 1:niters
83
84 % Calculate posteriors based on old parameters
85 [post, act] = gmmpost(mix, x);
86
87 % Calculate error value if needed
88 if (display | test)
89 prob = act*(mix.priors)';
90 % Error value is negative log likelihood of data
91 e = - sum(log(prob + eps));
92 if display > 0
93 fprintf(1, 'Cycle %4d Error %11.6f\n', n, e);
94 end
95 if test
96 if (n > 1 & abs(e - eold) < options(3))
97 options(8) = e;
98 ll = -e;
99 num_iter = n;
100 return; %%%%%%%%%%%%%%%% Exit here if converged
101 else
102 eold = e;
103 end
104 end
105 end
106
107 if ~isempty(fn)
108 feval(fn, mix, x, n, fnargs{:});
109 end
110
111 % Adjust the new estimates for the parameters
112 new_pr = sum(post, 1);
113 new_c = post' * x;
114
115 % Now move new estimates to old parameter vectors
116 mix.priors = new_pr ./ ndata;
117
118 mix.centres = new_c ./ (new_pr' * ones(1, mix.nin));
119
120 switch mix.covar_type
121 case 'spherical'
122 n2 = dist2(x, mix.centres);
123 for j = 1:mix.ncentres
124 v(j) = (post(:,j)'*n2(:,j));
125 end
126 mix.covars = ((v./new_pr) + sum(diag(prior_cov)))./mix.nin;
127 if check_covars
128 % Ensure that no covariance is too small
129 for j = 1:mix.ncentres
130 if mix.covars(j) < MIN_COVAR
131 mix.covars(j) = init_covars(j);
132 end
133 end
134 end
135 case 'diag'
136 for j = 1:mix.ncentres
137 diffs = x - (ones(ndata, 1) * mix.centres(j,:));
138 wts = (post(:,j)*ones(1, mix.nin));
139 mix.covars(j,:) = sum((diffs.*diffs).*wts + prior_cov, 1)./new_pr(j);
140 end
141 if check_covars
142 % Ensure that no covariance is too small
143 for j = 1:mix.ncentres
144 if min(mix.covars(j,:)) < MIN_COVAR
145 mix.covars(j,:) = init_covars(j,:);
146 end
147 end
148 end
149 case 'full'
150 for j = 1:mix.ncentres
151 diffs = x - (ones(ndata, 1) * mix.centres(j,:));
152 diffs = diffs.*(sqrt(post(:,j))*ones(1, mix.nin));
153 mix.covars(:,:,j) = (diffs'*diffs + prior_cov)/new_pr(j);
154 end
155 if check_covars
156 % Ensure that no covariance is too small
157 for j = 1:mix.ncentres
158 if min(svd(mix.covars(:,:,j))) < MIN_COVAR
159 mix.covars(:,:,j) = init_covars(:,:,j);
160 end
161 end
162 end
163 case 'ppca'
164 for j = 1:mix.ncentres
165 diffs = x - (ones(ndata, 1) * mix.centres(j,:));
166 diffs = diffs.*(sqrt(post(:,j))*ones(1, mix.nin));
167 [mix.covars(j), mix.U(:,:,j), mix.lambda(j,:)] = ...
168 ppca((diffs'*diffs)/new_pr(j), mix.ppca_dim);
169 end
170 if check_covars
171 if mix.covars(j) < MIN_COVAR
172 mix.covars(j) = init_covars(j);
173 end
174 end
175 otherwise
176 error(['Unknown covariance type ', mix.covar_type]);
177 end
178 end
179
180 ll = sum(log(gmmprob(mix, x)));
181 num_iter = n;
182
183 %if (display >= 0)
184 % disp('Warning: Maximum number of iterations has been exceeded');
185 %end
186