Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/rbfsetbf.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function net = rbfsetbf(net, options, x) | |
2 %RBFSETBF Set basis functions of RBF from data. | |
3 % | |
4 % Description | |
5 % NET = RBFSETBF(NET, OPTIONS, X) sets the basis functions of the RBF | |
6 % network NET so that they model the unconditional density of the | |
7 % dataset X. This is done by training a GMM with spherical covariances | |
8 % using GMMEM. The OPTIONS vector is passed to GMMEM. The widths of | |
9 % the functions are set by a call to RBFSETFW. | |
10 % | |
11 % See also | |
12 % RBFTRAIN, RBFSETFW, GMMEM | |
13 % | |
14 | |
15 % Copyright (c) Ian T Nabney (1996-2001) | |
16 | |
17 errstring = consist(net, 'rbf', x); | |
18 if ~isempty(errstring) | |
19 error(errstring); | |
20 end | |
21 | |
22 % Create a spherical Gaussian mixture model | |
23 mix = gmm(net.nin, net.nhidden, 'spherical'); | |
24 | |
25 % Initialise the parameters from the input data | |
26 % Just use a small number of k means iterations | |
27 kmoptions = zeros(1, 18); | |
28 kmoptions(1) = -1; % Turn off warnings | |
29 kmoptions(14) = 5; % Just 5 iterations to get centres roughly right | |
30 mix = gmminit(mix, x, kmoptions); | |
31 | |
32 % Train mixture model using EM algorithm | |
33 [mix, options] = gmmem(mix, x, options); | |
34 | |
35 % Now set the centres of the RBF from the centres of the mixture model | |
36 net.c = mix.centres; | |
37 | |
38 % options(7) gives scale of function widths | |
39 net = rbfsetfw(net, options(7)); |