comparison toolboxes/FullBNT-1.0.7/netlab3.3/rbf.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function net = rbf(nin, nhidden, nout, rbfunc, outfunc, prior, beta)
2 %RBF Creates an RBF network with specified architecture
3 %
4 % Description
5 % NET = RBF(NIN, NHIDDEN, NOUT, RBFUNC) constructs and initialises a
6 % radial basis function network returning a data structure NET. The
7 % weights are all initialised with a zero mean, unit variance normal
8 % distribution, with the exception of the variances, which are set to
9 % one. This makes use of the Matlab function RANDN and so the seed for
10 % the random weight initialization can be set using RANDN('STATE', S)
11 % where S is the seed value. The activation functions are defined in
12 % terms of the distance between the data point and the corresponding
13 % centre. Note that the functions are computed to a convenient
14 % constant multiple: for example, the Gaussian is not normalised.
15 % (Normalisation is not needed as the function outputs are linearly
16 % combined in the next layer.)
17 %
18 % The fields in NET are
19 % type = 'rbf'
20 % nin = number of inputs
21 % nhidden = number of hidden units
22 % nout = number of outputs
23 % nwts = total number of weights and biases
24 % actfn = string defining hidden unit activation function:
25 % 'gaussian' for a radially symmetric Gaussian function.
26 % 'tps' for r^2 log r, the thin plate spline function.
27 % 'r4logr' for r^4 log r.
28 % outfn = string defining output error function:
29 % 'linear' for linear outputs (default) and SoS error.
30 % 'neuroscale' for Sammon stress measure.
31 % c = centres
32 % wi = squared widths (null for rlogr and tps)
33 % w2 = second layer weight matrix
34 % b2 = second layer bias vector
35 %
36 % NET = RBF(NIN, NHIDDEN, NOUT, RBFUND, OUTFUNC) allows the user to
37 % specify the type of error function to be used. The field OUTFN is
38 % set to the value of this string. Linear outputs (for regression
39 % problems) and Neuroscale outputs (for topographic mappings) are
40 % supported.
41 %
42 % NET = RBF(NIN, NHIDDEN, NOUT, RBFUNC, OUTFUNC, PRIOR, BETA), in which
43 % PRIOR is a scalar, allows the field NET.ALPHA in the data structure
44 % NET to be set, corresponding to a zero-mean isotropic Gaussian prior
45 % with inverse variance with value PRIOR. Alternatively, PRIOR can
46 % consist of a data structure with fields ALPHA and INDEX, allowing
47 % individual Gaussian priors to be set over groups of weights in the
48 % network. Here ALPHA is a column vector in which each element
49 % corresponds to a separate group of weights, which need not be
50 % mutually exclusive. The membership of the groups is defined by the
51 % matrix INDX in which the columns correspond to the elements of ALPHA.
52 % Each column has one element for each weight in the matrix, in the
53 % order defined by the function RBFPAK, and each element is 1 or 0
54 % according to whether the weight is a member of the corresponding
55 % group or not. A utility function RBFPRIOR is provided to help in
56 % setting up the PRIOR data structure.
57 %
58 % NET = RBF(NIN, NHIDDEN, NOUT, FUNC, PRIOR, BETA) also sets the
59 % additional field NET.BETA in the data structure NET, where beta
60 % corresponds to the inverse noise variance.
61 %
62 % See also
63 % RBFERR, RBFFWD, RBFGRAD, RBFPAK, RBFTRAIN, RBFUNPAK
64 %
65
66 % Copyright (c) Ian T Nabney (1996-2001)
67
68 net.type = 'rbf';
69 net.nin = nin;
70 net.nhidden = nhidden;
71 net.nout = nout;
72
73 % Check that function is an allowed type
74 actfns = {'gaussian', 'tps', 'r4logr'};
75 outfns = {'linear', 'neuroscale'};
76 if (strcmp(rbfunc, actfns)) == 0
77 error('Undefined activation function.')
78 else
79 net.actfn = rbfunc;
80 end
81 if nargin <= 4
82 net.outfn = outfns{1};
83 elseif (strcmp(outfunc, outfns) == 0)
84 error('Undefined output function.')
85 else
86 net.outfn = outfunc;
87 end
88
89 % Assume each function has a centre and a single width parameter, and that
90 % hidden layer to output weights include a bias. Only the Gaussian function
91 % requires a width
92 net.nwts = nin*nhidden + (nhidden + 1)*nout;
93 if strcmp(rbfunc, 'gaussian')
94 % Extra weights for width parameters
95 net.nwts = net.nwts + nhidden;
96 end
97
98 if nargin > 5
99 if isstruct(prior)
100 net.alpha = prior.alpha;
101 net.index = prior.index;
102 elseif size(prior) == [1 1]
103 net.alpha = prior;
104 else
105 error('prior must be a scalar or a structure');
106 end
107 if nargin > 6
108 net.beta = beta;
109 end
110 end
111
112 w = randn(1, net.nwts);
113 net = rbfunpak(net, w);
114
115 % Make widths equal to one
116 if strcmp(rbfunc, 'gaussian')
117 net.wi = ones(1, nhidden);
118 end
119
120 if strcmp(net.outfn, 'neuroscale')
121 net.mask = rbfprior(rbfunc, nin, nhidden, nout);
122 end
123