comparison toolboxes/FullBNT-1.0.7/netlab3.3/ppca.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [var, U, lambda] = ppca(x, ppca_dim)
2 %PPCA Probabilistic Principal Components Analysis
3 %
4 % Description
5 % [VAR, U, LAMBDA] = PPCA(X, PPCA_DIM) computes the principal
6 % component subspace U of dimension PPCA_DIM using a centred covariance
7 % matrix X. The variable VAR contains the off-subspace variance (which
8 % is assumed to be spherical), while the vector LAMBDA contains the
9 % variances of each of the principal components. This is computed
10 % using the eigenvalue and eigenvector decomposition of X.
11 %
12 % See also
13 % EIGDEC, PCA
14 %
15
16 % Copyright (c) Ian T Nabney (1996-2001)
17
18
19 if ppca_dim ~= round(ppca_dim) | ppca_dim < 1 | ppca_dim > size(x, 2)
20 error('Number of PCs must be integer, >0, < dim');
21 end
22
23 [ndata, data_dim] = size(x);
24 % Assumes that x is centred and responsibility weighted
25 % covariance matrix
26 [l Utemp] = eigdec(x, data_dim);
27 % Zero any negative eigenvalues (caused by rounding)
28 l(l<0) = 0;
29 % Now compute the sigma squared values for all possible values
30 % of q
31 s2_temp = cumsum(l(end:-1:1))./[1:data_dim]';
32 % If necessary, reduce the value of q so that var is at least
33 % eps * largest eigenvalue
34 q_temp = min([ppca_dim; data_dim-min(find(s2_temp/l(1) > eps))]);
35 if q_temp ~= ppca_dim
36 wstringpart = 'Covariance matrix ill-conditioned: extracted';
37 wstring = sprintf('%s %d/%d PCs', ...
38 wstringpart, q_temp, ppca_dim);
39 warning(wstring);
40 end
41 if q_temp == 0
42 % All the latent dimensions have disappeared, so we are
43 % just left with the noise model
44 var = l(1)/data_dim;
45 lambda = var*ones(1, ppca_dim);
46 else
47 var = mean(l(q_temp+1:end));
48 end
49 U = Utemp(:, 1:q_temp);
50 lambda(1:q_temp) = l(1:q_temp);
51
52