Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/mlpfwd.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [y, z, a] = mlpfwd(net, x) | |
2 %MLPFWD Forward propagation through 2-layer network. | |
3 % | |
4 % Description | |
5 % Y = MLPFWD(NET, X) takes a network data structure NET together with a | |
6 % matrix X of input vectors, and forward propagates the inputs through | |
7 % the network to generate a matrix Y of output vectors. Each row of X | |
8 % corresponds to one input vector and each row of Y corresponds to one | |
9 % output vector. | |
10 % | |
11 % [Y, Z] = MLPFWD(NET, X) also generates a matrix Z of the hidden unit | |
12 % activations where each row corresponds to one pattern. | |
13 % | |
14 % [Y, Z, A] = MLPFWD(NET, X) also returns a matrix A giving the summed | |
15 % inputs to each output unit, where each row corresponds to one | |
16 % pattern. | |
17 % | |
18 % See also | |
19 % MLP, MLPPAK, MLPUNPAK, MLPERR, MLPBKP, MLPGRAD | |
20 % | |
21 | |
22 % Copyright (c) Ian T Nabney (1996-2001) | |
23 | |
24 % Check arguments for consistency | |
25 errstring = consist(net, 'mlp', x); | |
26 if ~isempty(errstring); | |
27 error(errstring); | |
28 end | |
29 | |
30 ndata = size(x, 1); | |
31 | |
32 z = tanh(x*net.w1 + ones(ndata, 1)*net.b1); | |
33 a = z*net.w2 + ones(ndata, 1)*net.b2; | |
34 | |
35 switch net.outfn | |
36 | |
37 case 'linear' % Linear outputs | |
38 | |
39 y = a; | |
40 | |
41 case 'logistic' % Logistic outputs | |
42 % Prevent overflow and underflow: use same bounds as mlperr | |
43 % Ensure that log(1-y) is computable: need exp(a) > eps | |
44 maxcut = -log(eps); | |
45 % Ensure that log(y) is computable | |
46 mincut = -log(1/realmin - 1); | |
47 a = min(a, maxcut); | |
48 a = max(a, mincut); | |
49 y = 1./(1 + exp(-a)); | |
50 | |
51 case 'softmax' % Softmax outputs | |
52 | |
53 % Prevent overflow and underflow: use same bounds as glmerr | |
54 % Ensure that sum(exp(a), 2) does not overflow | |
55 maxcut = log(realmax) - log(net.nout); | |
56 % Ensure that exp(a) > 0 | |
57 mincut = log(realmin); | |
58 a = min(a, maxcut); | |
59 a = max(a, mincut); | |
60 temp = exp(a); | |
61 y = temp./(sum(temp, 2)*ones(1, net.nout)); | |
62 | |
63 otherwise | |
64 error(['Unknown activation function ', net.outfn]); | |
65 end |