comparison toolboxes/FullBNT-1.0.7/netlab3.3/minbrack.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [br_min, br_mid, br_max, num_evals] = minbrack(f, a, b, fa, ...
2 varargin)
3 %MINBRACK Bracket a minimum of a function of one variable.
4 %
5 % Description
6 % BRMIN, BRMID, BRMAX, NUMEVALS] = MINBRACK(F, A, B, FA) finds a
7 % bracket of three points around a local minimum of F. The function F
8 % must have a one dimensional domain. A < B is an initial guess at the
9 % minimum and maximum points of a bracket, but MINBRACK will search
10 % outside this interval if necessary. The bracket consists of three
11 % points (in increasing order) such that F(BRMID) < F(BRMIN) and
12 % F(BRMID) < F(BRMAX). FA is the value of the function at A: it is
13 % included to avoid unnecessary function evaluations in the
14 % optimization routines. The return value NUMEVALS is the number of
15 % function evaluations in MINBRACK.
16 %
17 % MINBRACK(F, A, B, FA, P1, P2, ...) allows additional arguments to be
18 % passed to F
19 %
20 % See also
21 % LINEMIN, LINEF
22 %
23
24 % Copyright (c) Ian T Nabney (1996-2001)
25
26 % Check function string
27 f = fcnchk(f, length(varargin));
28
29 % Value of golden section (1 + sqrt(5))/2.0
30 phi = 1.6180339887499;
31
32 % Initialise count of number of function evaluations
33 num_evals = 0;
34
35 % A small non-zero number to avoid dividing by zero in quadratic interpolation
36 TINY = 1.e-10;
37
38 % Maximal proportional step to take: don't want to make this too big
39 % as then spend a lot of time finding the minimum inside the bracket
40 max_step = 10.0;
41
42 fb = feval(f, b, varargin{:});
43 num_evals = num_evals + 1;
44
45 % Assume that we know going from a to b is downhill initially
46 % (usually because gradf(a) < 0).
47 if (fb > fa)
48 % Minimum must lie between a and b: do golden section until we find point
49 % low enough to be middle of bracket
50 c = b;
51 b = a + (c-a)/phi;
52 fb = feval(f, b, varargin{:});
53 num_evals = num_evals + 1;
54 while (fb > fa)
55 c = b;
56 b = a + (c-a)/phi;
57 fb = feval(f, b, varargin{:});
58 num_evals = num_evals + 1;
59 end
60 else
61 % There is a valid bracket upper bound greater than b
62 c = b + phi*(b-a);
63 fc = feval(f, c, varargin{:});
64 num_evals = num_evals + 1;
65 bracket_found = 0;
66
67 while (fb > fc)
68 % Do a quadratic interpolation (i.e. to minimum of quadratic)
69 r = (b-a).*(fb-fc);
70 q = (b-c).*(fb-fa);
71 u = b - ((b-c)*q - (b-a)*r)/(2.0*(sign(q-r)*max([abs(q-r), TINY])));
72 ulimit = b + max_step*(c-b);
73
74 if ((b-u)'*(u-c) > 0.0)
75 % Interpolant lies between b and c
76 fu = feval(f, u, varargin{:});
77 num_evals = num_evals + 1;
78 if (fu < fc)
79 % Have a minimum between b and c
80 br_min = b;
81 br_mid = u;
82 br_max = c;
83 return;
84 elseif (fu > fb)
85 % Have a minimum between a and u
86 br_min = a;
87 br_mid = c;
88 br_max = u;
89 return;
90 end
91 % Quadratic interpolation didn't give a bracket, so take a golden step
92 u = c + phi*(c-b);
93 elseif ((c-u)'*(u-ulimit) > 0.0)
94 % Interpolant lies between c and limit
95 fu = feval(f, u, varargin{:});
96 num_evals = num_evals + 1;
97 if (fu < fc)
98 % Move bracket along, and then take a golden section step
99 b = c;
100 c = u;
101 u = c + phi*(c-b);
102 else
103 bracket_found = 1;
104 end
105 elseif ((u-ulimit)'*(ulimit-c) >= 0.0)
106 % Limit parabolic u to maximum value
107 u = ulimit;
108 else
109 % Reject parabolic u and use golden section step
110 u = c + phi*(c-b);
111 end
112 if ~bracket_found
113 fu = feval(f, u, varargin{:});
114 num_evals = num_evals + 1;
115 end
116 a = b; b = c; c = u;
117 fa = fb; fb = fc; fc = fu;
118 end % while loop
119 end % bracket found
120 br_mid = b;
121 if (a < c)
122 br_min = a;
123 br_max = c;
124 else
125 br_min = c;
126 br_max = a;
127 end