Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/mdnfwd.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [mixparams, y, z, a] = mdnfwd(net, x) | |
2 %MDNFWD Forward propagation through Mixture Density Network. | |
3 % | |
4 % Description | |
5 % MIXPARAMS = MDNFWD(NET, X) takes a mixture density network data | |
6 % structure NET and a matrix X of input vectors, and forward propagates | |
7 % the inputs through the network to generate a structure MIXPARAMS | |
8 % which contains the parameters of several mixture models. Each row | |
9 % of X represents one input vector and the corresponding row of the | |
10 % matrices in MIXPARAMS represents the parameters of a mixture model | |
11 % for the conditional probability of target vectors given the input | |
12 % vector. This is not represented as an array of GMM structures to | |
13 % improve the efficiency of MDN training. | |
14 % | |
15 % The fields in MIXPARAMS are | |
16 % type = 'mdnmixes' | |
17 % ncentres = number of mixture components | |
18 % dimtarget = dimension of target space | |
19 % mixcoeffs = mixing coefficients | |
20 % centres = means of Gaussians: stored as one row per pattern | |
21 % covars = covariances of Gaussians | |
22 % nparams = number of parameters | |
23 % | |
24 % [MIXPARAMS, Y, Z] = MDNFWD(NET, X) also generates a matrix Y of the | |
25 % outputs of the MLP and a matrix Z of the hidden unit activations | |
26 % where each row corresponds to one pattern. | |
27 % | |
28 % [MIXPARAMS, Y, Z, A] = MLPFWD(NET, X) also returns a matrix A giving | |
29 % the summed inputs to each output unit, where each row corresponds to | |
30 % one pattern. | |
31 % | |
32 % See also | |
33 % MDN, MDN2GMM, MDNERR, MDNGRAD, MLPFWD | |
34 % | |
35 | |
36 % Copyright (c) Ian T Nabney (1996-2001) | |
37 % David J Evans (1998) | |
38 | |
39 % Check arguments for consistency | |
40 errstring = consist(net, 'mdn', x); | |
41 if ~isempty(errstring) | |
42 error(errstring); | |
43 end | |
44 | |
45 % Extract mlp and mixture model descriptors | |
46 mlpnet = net.mlp; | |
47 mixes = net.mdnmixes; | |
48 | |
49 ncentres = mixes.ncentres; % Number of components in mixture model | |
50 dim_target = mixes.dim_target; % Dimension of targets | |
51 nparams = mixes.nparams; % Number of parameters in mixture model | |
52 | |
53 % Propagate forwards through MLP | |
54 [y, z, a] = mlpfwd(mlpnet, x); | |
55 | |
56 % Compute the postion for each parameter in the whole | |
57 % matrix. Used to define the mixparams structure | |
58 mixcoeff = [1:1:ncentres]; | |
59 centres = [ncentres+1:1:(ncentres*(1+dim_target))]; | |
60 variances = [(ncentres*(1+dim_target)+1):1:nparams]; | |
61 | |
62 % Convert output values into mixture model parameters | |
63 | |
64 % Use softmax to calculate priors | |
65 % Prevent overflow and underflow: use same bounds as glmfwd | |
66 % Ensure that sum(exp(y), 2) does not overflow | |
67 maxcut = log(realmax) - log(ncentres); | |
68 % Ensure that exp(y) > 0 | |
69 mincut = log(realmin); | |
70 temp = min(y(:,1:ncentres), maxcut); | |
71 temp = max(temp, mincut); | |
72 temp = exp(temp); | |
73 mixpriors = temp./(sum(temp, 2)*ones(1,ncentres)); | |
74 | |
75 % Centres are just copies of network outputs | |
76 mixcentres = y(:,(ncentres+1):ncentres*(1+dim_target)); | |
77 | |
78 % Variances are exp of network outputs | |
79 mixwidths = exp(y(:,(ncentres*(1+dim_target)+1):nparams)); | |
80 | |
81 % Now build up all the mixture model weight vectors | |
82 ndata = size(x, 1); | |
83 | |
84 % Return parameters | |
85 mixparams.type = mixes.type; | |
86 mixparams.ncentres = mixes.ncentres; | |
87 mixparams.dim_target = mixes.dim_target; | |
88 mixparams.nparams = mixes.nparams; | |
89 | |
90 mixparams.mixcoeffs = mixpriors; | |
91 mixparams.centres = mixcentres; | |
92 mixparams.covars = mixwidths; | |
93 |