comparison toolboxes/FullBNT-1.0.7/netlab3.3/gtminit.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function net = gtminit(net, options, data, samp_type, varargin)
2 %GTMINIT Initialise the weights and latent sample in a GTM.
3 %
4 % Description
5 % NET = GTMINIT(NET, OPTIONS, DATA, SAMPTYPE) takes a GTM NET and
6 % generates a sample of latent data points and sets the centres (and
7 % widths if appropriate) of NET.RBFNET.
8 %
9 % If the SAMPTYPE is 'REGULAR', then regular grids of latent data
10 % points and RBF centres are created. The dimension of the latent data
11 % space must be 1 or 2. For one-dimensional latent space, the
12 % LSAMPSIZE parameter gives the number of latent points and the
13 % RBFSAMPSIZE parameter gives the number of RBF centres. For a two-
14 % dimensional latent space, these parameters must be vectors of length
15 % 2 with the number of points in each of the x and y directions to
16 % create a rectangular grid. The widths of the RBF basis functions are
17 % set by a call to RBFSETFW passing OPTIONS(7) as the scaling
18 % parameter.
19 %
20 % If the SAMPTYPE is 'UNIFORM' or 'GAUSSIAN' then the latent data is
21 % found by sampling from a uniform or Gaussian distribution
22 % correspondingly. The RBF basis function parameters are set by a call
23 % to RBFSETBF with the DATA parameter as dataset and the OPTIONS
24 % vector.
25 %
26 % Finally, the output layer weights of the RBF are initialised by
27 % mapping the mean of the latent variable to the mean of the target
28 % variable, and the L-dimensional latent variale variance to the
29 % variance of the targets along the first L principal components.
30 %
31 % See also
32 % GTM, GTMEM, PCA, RBFSETBF, RBFSETFW
33 %
34
35 % Copyright (c) Ian T Nabney (1996-2001)
36
37 % Check for consistency
38 errstring = consist(net, 'gtm', data);
39 if ~isempty(errstring)
40 error(errstring);
41 end
42
43 % Check type of sample
44 stypes = {'regular', 'uniform', 'gaussian'};
45 if (strcmp(samp_type, stypes)) == 0
46 error('Undefined sample type.')
47 end
48
49 if net.dim_latent > size(data, 2)
50 error('Latent space dimension must not be greater than data dimension')
51 end
52 nlatent = net.gmmnet.ncentres;
53 nhidden = net.rbfnet.nhidden;
54
55 % Create latent data sample and set RBF centres
56
57 switch samp_type
58 case 'regular'
59 if nargin ~= 6
60 error('Regular type must specify latent and RBF shapes');
61 end
62 l_samp_size = varargin{1};
63 rbf_samp_size = varargin{2};
64 if round(l_samp_size) ~= l_samp_size
65 error('Latent sample specification must contain integers')
66 end
67 % Check existence and size of rbf specification
68 if any(size(rbf_samp_size) ~= [1 net.dim_latent]) | ...
69 prod(rbf_samp_size) ~= nhidden
70 error('Incorrect specification of RBF centres')
71 end
72 % Check dimension and type of latent data specification
73 if any(size(l_samp_size) ~= [1 net.dim_latent]) | ...
74 prod(l_samp_size) ~= nlatent
75 error('Incorrect dimension of latent sample spec.')
76 end
77 if net.dim_latent == 1
78 net.X = [-1:2/(l_samp_size-1):1]';
79 net.rbfnet.c = [-1:2/(rbf_samp_size-1):1]';
80 net.rbfnet = rbfsetfw(net.rbfnet, options(7));
81 elseif net.dim_latent == 2
82 net.X = gtm_rctg(l_samp_size);
83 net.rbfnet.c = gtm_rctg(rbf_samp_size);
84 net.rbfnet = rbfsetfw(net.rbfnet, options(7));
85 else
86 error('For regular sample, input dimension must be 1 or 2.')
87 end
88
89
90 case {'uniform', 'gaussian'}
91 if strcmp(samp_type, 'uniform')
92 net.X = 2 * (rand(nlatent, net.dim_latent) - 0.5);
93 else
94 % Sample from N(0, 0.25) distribution to ensure most latent
95 % data is inside square
96 net.X = randn(nlatent, net.dim_latent)/2;
97 end
98 net.rbfnet = rbfsetbf(net.rbfnet, options, net.X);
99 otherwise
100 % Shouldn't get here
101 error('Invalid sample type');
102
103 end
104
105 % Latent data sample and basis function parameters chosen.
106 % Now set output weights
107 [PCcoeff, PCvec] = pca(data);
108
109 % Scale PCs by eigenvalues
110 A = PCvec(:, 1:net.dim_latent)*diag(sqrt(PCcoeff(1:net.dim_latent)));
111
112 [temp, Phi] = rbffwd(net.rbfnet, net.X);
113 % Normalise X to ensure 1:1 mapping of variances and calculate weights
114 % as solution of Phi*W = normX*A'
115 normX = (net.X - ones(size(net.X))*diag(mean(net.X)))*diag(1./std(net.X));
116 net.rbfnet.w2 = Phi \ (normX*A');
117 % Bias is mean of target data
118 net.rbfnet.b2 = mean(data);
119
120 % Must also set initial value of variance
121 % Find average distance between nearest centres
122 % Ensure that distance of centre to itself is excluded by setting diagonal
123 % entries to realmax
124 net.gmmnet.centres = rbffwd(net.rbfnet, net.X);
125 d = dist2(net.gmmnet.centres, net.gmmnet.centres) + ...
126 diag(ones(net.gmmnet.ncentres, 1)*realmax);
127 sigma = mean(min(d))/2;
128
129 % Now set covariance to minimum of this and next largest eigenvalue
130 if net.dim_latent < size(data, 2)
131 sigma = min(sigma, PCcoeff(net.dim_latent+1));
132 end
133 net.gmmnet.covars = sigma*ones(1, net.gmmnet.ncentres);
134
135 % Sub-function to create the sample data in 2d
136 function sample = gtm_rctg(samp_size)
137
138 xDim = samp_size(1);
139 yDim = samp_size(2);
140 % Produce a grid with the right number of rows and columns
141 [X, Y] = meshgrid([0:1:(xDim-1)], [(yDim-1):-1:0]);
142
143 % Change grid representation
144 sample = [X(:), Y(:)];
145
146 % Shift grid to correct position and scale it
147 maxXY= max(sample);
148 sample(:,1) = 2*(sample(:,1) - maxXY(1)/2)./maxXY(1);
149 sample(:,2) = 2*(sample(:,2) - maxXY(2)/2)./maxXY(2);
150 return;
151
152
153