Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/graddesc.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [x, options, flog, pointlog] = graddesc(f, x, options, gradf, ... | |
2 varargin) | |
3 %GRADDESC Gradient descent optimization. | |
4 % | |
5 % Description | |
6 % [X, OPTIONS, FLOG, POINTLOG] = GRADDESC(F, X, OPTIONS, GRADF) uses | |
7 % batch gradient descent to find a local minimum of the function F(X) | |
8 % whose gradient is given by GRADF(X). A log of the function values | |
9 % after each cycle is (optionally) returned in ERRLOG, and a log of the | |
10 % points visited is (optionally) returned in POINTLOG. | |
11 % | |
12 % Note that X is a row vector and F returns a scalar value. The point | |
13 % at which F has a local minimum is returned as X. The function value | |
14 % at that point is returned in OPTIONS(8). | |
15 % | |
16 % GRADDESC(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional | |
17 % arguments to be passed to F() and GRADF(). | |
18 % | |
19 % The optional parameters have the following interpretations. | |
20 % | |
21 % OPTIONS(1) is set to 1 to display error values; also logs error | |
22 % values in the return argument ERRLOG, and the points visited in the | |
23 % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only | |
24 % warning messages are displayed. If OPTIONS(1) is -1, then nothing is | |
25 % displayed. | |
26 % | |
27 % OPTIONS(2) is the absolute precision required for the value of X at | |
28 % the solution. If the absolute difference between the values of X | |
29 % between two successive steps is less than OPTIONS(2), then this | |
30 % condition is satisfied. | |
31 % | |
32 % OPTIONS(3) is a measure of the precision required of the objective | |
33 % function at the solution. If the absolute difference between the | |
34 % objective function values between two successive steps is less than | |
35 % OPTIONS(3), then this condition is satisfied. Both this and the | |
36 % previous condition must be satisfied for termination. | |
37 % | |
38 % OPTIONS(7) determines the line minimisation method used. If it is | |
39 % set to 1 then a line minimiser is used (in the direction of the | |
40 % negative gradient). If it is 0 (the default), then each parameter | |
41 % update is a fixed multiple (the learning rate) of the negative | |
42 % gradient added to a fixed multiple (the momentum) of the previous | |
43 % parameter update. | |
44 % | |
45 % OPTIONS(9) should be set to 1 to check the user defined gradient | |
46 % function GRADF with GRADCHEK. This is carried out at the initial | |
47 % parameter vector X. | |
48 % | |
49 % OPTIONS(10) returns the total number of function evaluations | |
50 % (including those in any line searches). | |
51 % | |
52 % OPTIONS(11) returns the total number of gradient evaluations. | |
53 % | |
54 % OPTIONS(14) is the maximum number of iterations; default 100. | |
55 % | |
56 % OPTIONS(15) is the precision in parameter space of the line search; | |
57 % default FOPTIONS(2). | |
58 % | |
59 % OPTIONS(17) is the momentum; default 0.5. It should be scaled by the | |
60 % inverse of the number of data points. | |
61 % | |
62 % OPTIONS(18) is the learning rate; default 0.01. It should be scaled | |
63 % by the inverse of the number of data points. | |
64 % | |
65 % See also | |
66 % CONJGRAD, LINEMIN, OLGD, MINBRACK, QUASINEW, SCG | |
67 % | |
68 | |
69 % Copyright (c) Ian T Nabney (1996-2001) | |
70 | |
71 % Set up the options. | |
72 if length(options) < 18 | |
73 error('Options vector too short') | |
74 end | |
75 | |
76 if (options(14)) | |
77 niters = options(14); | |
78 else | |
79 niters = 100; | |
80 end | |
81 | |
82 line_min_flag = 0; % Flag for line minimisation option | |
83 if (round(options(7)) == 1) | |
84 % Use line minimisation | |
85 line_min_flag = 1; | |
86 % Set options for line minimiser | |
87 line_options = foptions; | |
88 if options(15) > 0 | |
89 line_options(2) = options(15); | |
90 end | |
91 else | |
92 % Learning rate: must be positive | |
93 if (options(18) > 0) | |
94 eta = options(18); | |
95 else | |
96 eta = 0.01; | |
97 end | |
98 % Momentum term: allow zero momentum | |
99 if (options(17) >= 0) | |
100 mu = options(17); | |
101 else | |
102 mu = 0.5; | |
103 end | |
104 end | |
105 | |
106 % Check function string | |
107 f = fcnchk(f, length(varargin)); | |
108 gradf = fcnchk(gradf, length(varargin)); | |
109 | |
110 % Display information if options(1) > 0 | |
111 display = options(1) > 0; | |
112 | |
113 % Work out if we need to compute f at each iteration. | |
114 % Needed if using line search or if display results or if termination | |
115 % criterion requires it. | |
116 fcneval = (options(7) | display | options(3)); | |
117 | |
118 % Check gradients | |
119 if (options(9) > 0) | |
120 feval('gradchek', x, f, gradf, varargin{:}); | |
121 end | |
122 | |
123 dxold = zeros(1, size(x, 2)); | |
124 xold = x; | |
125 fold = 0; % Must be initialised so that termination test can be performed | |
126 if fcneval | |
127 fnew = feval(f, x, varargin{:}); | |
128 options(10) = options(10) + 1; | |
129 fold = fnew; | |
130 end | |
131 | |
132 % Main optimization loop. | |
133 for j = 1:niters | |
134 xold = x; | |
135 grad = feval(gradf, x, varargin{:}); | |
136 options(11) = options(11) + 1; % Increment gradient evaluation counter | |
137 if (line_min_flag ~= 1) | |
138 dx = mu*dxold - eta*grad; | |
139 x = x + dx; | |
140 dxold = dx; | |
141 if fcneval | |
142 fold = fnew; | |
143 fnew = feval(f, x, varargin{:}); | |
144 options(10) = options(10) + 1; | |
145 end | |
146 else | |
147 sd = - grad./norm(grad); % New search direction. | |
148 fold = fnew; | |
149 % Do a line search: normalise search direction to have length 1 | |
150 [lmin, line_options] = feval('linemin', f, x, sd, fold, ... | |
151 line_options, varargin{:}); | |
152 options(10) = options(10) + line_options(10); | |
153 x = xold + lmin*sd; | |
154 fnew = line_options(8); | |
155 end | |
156 if nargout >= 3 | |
157 flog(j) = fnew; | |
158 if nargout >= 4 | |
159 pointlog(j, :) = x; | |
160 end | |
161 end | |
162 if display | |
163 fprintf(1, 'Cycle %5d Function %11.8f\n', j, fnew); | |
164 end | |
165 if (max(abs(x - xold)) < options(2) & abs(fnew - fold) < options(3)) | |
166 % Termination criteria are met | |
167 options(8) = fnew; | |
168 return; | |
169 end | |
170 end | |
171 | |
172 if fcneval | |
173 options(8) = fnew; | |
174 else | |
175 options(8) = feval(f, x, varargin{:}); | |
176 options(10) = options(10) + 1; | |
177 end | |
178 if (options(1) >= 0) | |
179 disp(maxitmess); | |
180 end |