Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/netlab3.3/demgmm4.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 %DEMGMM4 Demonstrate density modelling with a Gaussian mixture model. | |
2 % | |
3 % Description | |
4 % The problem consists of modelling data generated by a mixture of | |
5 % three Gaussians in 2 dimensions with a mixture model using full | |
6 % covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres | |
7 % are (2, 3.5), (0, 0) and (0,2); the variances are (0.16, 0.64) axis | |
8 % aligned, (0.25, 1) rotated by 30 degrees and the identity matrix. The | |
9 % first figure contains a scatter plot of the data. | |
10 % | |
11 % A Gaussian mixture model with three components is trained using EM. | |
12 % The parameter vector is printed before training and after training. | |
13 % The user should press any key to continue at these points. The | |
14 % parameter vector consists of priors (the column), and centres (given | |
15 % as (x, y) pairs as the next two columns). The covariance matrices | |
16 % are printed separately. | |
17 % | |
18 % The second figure is a 3 dimensional view of the density function, | |
19 % while the third shows the axes of the 1-standard deviation ellipses | |
20 % for the three components of the mixture model. | |
21 % | |
22 % See also | |
23 % GMM, GMMINIT, GMMEM, GMMPROB, GMMUNPAK | |
24 % | |
25 | |
26 % Copyright (c) Ian T Nabney (1996-2001) | |
27 | |
28 | |
29 % Generate the data | |
30 | |
31 ndata = 500; | |
32 | |
33 % Fix the seeds for reproducible results | |
34 randn('state', 42); | |
35 rand('state', 42); | |
36 data = randn(ndata, 2); | |
37 prior = [0.3 0.5 0.2]; | |
38 % Mixture model swaps clusters 1 and 3 | |
39 datap = [0.2 0.5 0.3]; | |
40 datac = [0 2; 0 0; 2 3.5]; | |
41 datacov = repmat(eye(2), [1 1 3]); | |
42 data1 = data(1:prior(1)*ndata,:); | |
43 data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :); | |
44 data3 = data((prior(1)+prior(2))*ndata +1:ndata, :); | |
45 | |
46 % First cluster has axis aligned variance and centre (2, 3.5) | |
47 data1(:, 1) = data1(:, 1)*0.4 + 2.0; | |
48 data1(:, 2) = data1(:, 2)*0.8 + 3.5; | |
49 datacov(:, :, 3) = [0.4*0.4 0; 0 0.8*0.8]; | |
50 | |
51 % Second cluster has variance axes rotated by 30 degrees and centre (0, 0) | |
52 rotn = [cos(pi/6) -sin(pi/6); sin(pi/6) cos(pi/6)]; | |
53 data2(:,1) = data2(:, 1)*0.5; | |
54 data2 = data2*rotn; | |
55 datacov(:, :, 2) = rotn' * [0.25 0; 0 1] * rotn; | |
56 | |
57 % Third cluster is at (0,2) | |
58 data3 = data3 + repmat([0 2], prior(3)*ndata, 1); | |
59 | |
60 % Put the dataset together again | |
61 data = [data1; data2; data3]; | |
62 | |
63 clc | |
64 disp('This demonstration illustrates the use of a Gaussian mixture model') | |
65 disp('with full covariance matrices to approximate the unconditional ') | |
66 disp('probability density of data in a two-dimensional space.') | |
67 disp('We begin by generating the data from a mixture of three Gaussians and') | |
68 disp('plotting it.') | |
69 disp(' ') | |
70 disp('The first cluster has axis aligned variance and centre (0, 2).') | |
71 disp('The second cluster has variance axes rotated by 30 degrees') | |
72 disp('and centre (0, 0). The third cluster has unit variance and centre') | |
73 disp('(2, 3.5).') | |
74 disp(' ') | |
75 disp('Press any key to continue.') | |
76 pause | |
77 | |
78 fh1 = figure; | |
79 plot(data(:, 1), data(:, 2), 'o') | |
80 set(gca, 'Box', 'on') | |
81 | |
82 % Set up mixture model | |
83 ncentres = 3; | |
84 input_dim = 2; | |
85 mix = gmm(input_dim, ncentres, 'full'); | |
86 | |
87 % Initialise the model parameters from the data | |
88 options = foptions; | |
89 options(14) = 5; % Just use 5 iterations of k-means in initialisation | |
90 mix = gmminit(mix, data, options); | |
91 | |
92 % Print out model | |
93 clc | |
94 disp('The mixture model has three components and full covariance') | |
95 disp('matrices. The model parameters after initialisation using the') | |
96 disp('k-means algorithm are as follows') | |
97 disp(' Priors Centres') | |
98 disp([mix.priors' mix.centres]) | |
99 disp('Covariance matrices are') | |
100 disp(mix.covars) | |
101 disp('Press any key to continue.') | |
102 pause | |
103 | |
104 % Set up vector of options for EM trainer | |
105 options = zeros(1, 18); | |
106 options(1) = 1; % Prints out error values. | |
107 options(14) = 50; % Number of iterations. | |
108 | |
109 disp('We now train the model using the EM algorithm for 50 iterations.') | |
110 disp(' ') | |
111 disp('Press any key to continue.') | |
112 pause | |
113 [mix, options, errlog] = gmmem(mix, data, options); | |
114 | |
115 % Print out model | |
116 disp(' ') | |
117 disp('The trained model has priors and centres:') | |
118 disp(' Priors Centres') | |
119 disp([mix.priors' mix.centres]) | |
120 disp('The data generator has priors and centres') | |
121 disp(' Priors Centres') | |
122 disp([datap' datac]) | |
123 disp('Model covariance matrices are') | |
124 disp(mix.covars(:, :, 1)) | |
125 disp(mix.covars(:, :, 2)) | |
126 disp(mix.covars(:, :, 3)) | |
127 disp('Data generator covariance matrices are') | |
128 disp(datacov(:, :, 1)) | |
129 disp(datacov(:, :, 2)) | |
130 disp(datacov(:, :, 3)) | |
131 disp('Note the close correspondence between these parameters and those') | |
132 disp('of the distribution used to generate the data. The match for') | |
133 disp('covariance matrices is not that close, but would be improved with') | |
134 disp('more iterations of the training algorithm.') | |
135 disp(' ') | |
136 disp('Press any key to continue.') | |
137 pause | |
138 | |
139 clc | |
140 disp('We now plot the density given by the mixture model as a surface plot.') | |
141 disp(' ') | |
142 disp('Press any key to continue.') | |
143 pause | |
144 | |
145 % Plot the result | |
146 x = -4.0:0.2:5.0; | |
147 y = -4.0:0.2:5.0; | |
148 [X, Y] = meshgrid(x,y); | |
149 X = X(:); | |
150 Y = Y(:); | |
151 grid = [X Y]; | |
152 Z = gmmprob(mix, grid); | |
153 Z = reshape(Z, length(x), length(y)); | |
154 c = mesh(x, y, Z); | |
155 hold on | |
156 title('Surface plot of probability density') | |
157 hold off | |
158 drawnow | |
159 | |
160 clc | |
161 disp('The final plot shows the centres and widths, given by one standard') | |
162 disp('deviation, of the three components of the mixture model. The axes') | |
163 disp('of the ellipses of constant density are shown.') | |
164 disp(' ') | |
165 disp('Press any key to continue.') | |
166 pause | |
167 | |
168 % Try to calculate a sensible position for the second figure, below the first | |
169 fig1_pos = get(fh1, 'Position'); | |
170 fig2_pos = fig1_pos; | |
171 fig2_pos(2) = fig2_pos(2) - fig1_pos(4) - 30; | |
172 fh2 = figure('Position', fig2_pos); | |
173 | |
174 h3 = plot(data(:, 1), data(:, 2), 'bo'); | |
175 axis equal; | |
176 hold on | |
177 title('Plot of data and covariances') | |
178 for i = 1:ncentres | |
179 [v,d] = eig(mix.covars(:,:,i)); | |
180 for j = 1:2 | |
181 % Ensure that eigenvector has unit length | |
182 v(:,j) = v(:,j)/norm(v(:,j)); | |
183 start=mix.centres(i,:)-sqrt(d(j,j))*(v(:,j)'); | |
184 endpt=mix.centres(i,:)+sqrt(d(j,j))*(v(:,j)'); | |
185 linex = [start(1) endpt(1)]; | |
186 liney = [start(2) endpt(2)]; | |
187 line(linex, liney, 'Color', 'k', 'LineWidth', 3) | |
188 end | |
189 % Plot ellipses of one standard deviation | |
190 theta = 0:0.02:2*pi; | |
191 x = sqrt(d(1,1))*cos(theta); | |
192 y = sqrt(d(2,2))*sin(theta); | |
193 % Rotate ellipse axes | |
194 ellipse = (v*([x; y]))'; | |
195 % Adjust centre | |
196 ellipse = ellipse + ones(length(theta), 1)*mix.centres(i,:); | |
197 plot(ellipse(:,1), ellipse(:,2), 'r-'); | |
198 end | |
199 hold off | |
200 | |
201 disp('Note how the data cluster positions and widths are captured by') | |
202 disp('the mixture model.') | |
203 disp(' ') | |
204 disp('Press any key to end.') | |
205 pause | |
206 | |
207 close(fh1); | |
208 close(fh2); | |
209 clear all; | |
210 |