Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/ppca.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual ppca | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> ppca | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Probabilistic Principal Components Analysis | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 [var, U, lambda] = pca(x, ppca_dim) | |
20 </PRE> | |
21 | |
22 | |
23 <p><h2> | |
24 Description | |
25 </h2> | |
26 | |
27 <CODE>[var, U, lambda] = ppca(x, ppca_dim)</CODE> computes the principal component | |
28 subspace <CODE>U</CODE> of dimension <CODE>ppca_dim</CODE> using a centred | |
29 covariance matrix <CODE>x</CODE>. The variable <CODE>var</CODE> contains | |
30 the off-subspace variance (which is assumed to be spherical), while the | |
31 vector <CODE>lambda</CODE> contains the variances of each of the principal | |
32 components. This is computed using the eigenvalue and eigenvector | |
33 decomposition of <CODE>x</CODE>. | |
34 | |
35 <p><h2> | |
36 See Also | |
37 </h2> | |
38 <CODE><a href="eigdec.htm">eigdec</a></CODE>, <CODE><a href="pca.htm">pca</a></CODE><hr> | |
39 <b>Pages:</b> | |
40 <a href="index.htm">Index</a> | |
41 <hr> | |
42 <p>Copyright (c) Ian T Nabney (1996-9) | |
43 | |
44 | |
45 </body> | |
46 </html> |