Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/netopt.htm @ 0:e9a9cd732c1e tip
first hg version after svn
| author | wolffd | 
|---|---|
| date | Tue, 10 Feb 2015 15:05:51 +0000 | 
| parents | |
| children | 
   comparison
  equal
  deleted
  inserted
  replaced
| -1:000000000000 | 0:e9a9cd732c1e | 
|---|---|
| 1 <html> | |
| 2 <head> | |
| 3 <title> | |
| 4 Netlab Reference Manual netopt | |
| 5 </title> | |
| 6 </head> | |
| 7 <body> | |
| 8 <H1> netopt | |
| 9 </H1> | |
| 10 <h2> | |
| 11 Purpose | |
| 12 </h2> | |
| 13 Optimize the weights in a network model. | |
| 14 | |
| 15 <p><h2> | |
| 16 Synopsis | |
| 17 </h2> | |
| 18 <PRE> | |
| 19 [net, options] = netopt(net, options, x, t, alg) | |
| 20 [net, options, varargout] = netopt(net, options, x, t, alg) | |
| 21 </PRE> | |
| 22 | |
| 23 | |
| 24 <p><h2> | |
| 25 Description | |
| 26 </h2> | |
| 27 | |
| 28 <p><CODE>netopt</CODE> is a helper function which facilitates the training of | |
| 29 networks using the general purpose optimizers as well as sampling from the | |
| 30 posterior distribution of parameters using general purpose Markov chain | |
| 31 Monte Carlo sampling algorithms. It can be used with any function that | |
| 32 searches in parameter space using error and gradient functions. | |
| 33 | |
| 34 <p><CODE>[net, options] = netopt(net, options, x, t, alg)</CODE> takes a network | |
| 35 data structure <CODE>net</CODE>, together with a vector <CODE>options</CODE> of | |
| 36 parameters governing the behaviour of the optimization algorithm, a | |
| 37 matrix <CODE>x</CODE> of input vectors and a matrix <CODE>t</CODE> of target | |
| 38 vectors, and returns the trained network as well as an updated | |
| 39 <CODE>options</CODE> vector. The string <CODE>alg</CODE> determines which optimization | |
| 40 algorithm (<CODE>conjgrad</CODE>, <CODE>quasinew</CODE>, <CODE>scg</CODE>, etc.) or Monte | |
| 41 Carlo algorithm (such as <CODE>hmc</CODE>) will be used. | |
| 42 | |
| 43 <p><CODE>[net, options, varargout] = netopt(net, options, x, t, alg)</CODE> | |
| 44 also returns any additional return values from the optimisation algorithm. | |
| 45 | |
| 46 <p><h2> | |
| 47 Examples | |
| 48 </h2> | |
| 49 Suppose we create a 4-input, 3 hidden unit, 2-output feed-forward | |
| 50 network using <CODE>net = mlp(4, 3, 2, 'linear')</CODE>. We can then train | |
| 51 the network with the scaled conjugate gradient algorithm by using | |
| 52 <CODE>net = netopt(net, options, x, t, 'scg')</CODE> where <CODE>x</CODE> and | |
| 53 <CODE>t</CODE> are the input and target data matrices respectively, and the | |
| 54 options vector is set appropriately for <CODE>scg</CODE>. | |
| 55 | |
| 56 <p>If we also wish to plot the learning curve, we can use the additional | |
| 57 return value <CODE>errlog</CODE> given by <CODE>scg</CODE>: | |
| 58 <PRE> | |
| 59 | |
| 60 [net, options, errlog] = netopt(net, options, x, t, 'scg'); | |
| 61 </PRE> | |
| 62 | |
| 63 | |
| 64 <p><h2> | |
| 65 See Also | |
| 66 </h2> | |
| 67 <CODE><a href="netgrad.htm">netgrad</a></CODE>, <CODE><a href="bfgs.htm">bfgs</a></CODE>, <CODE><a href="conjgrad.htm">conjgrad</a></CODE>, <CODE><a href="graddesc.htm">graddesc</a></CODE>, <CODE><a href="hmc.htm">hmc</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE><hr> | |
| 68 <b>Pages:</b> | |
| 69 <a href="index.htm">Index</a> | |
| 70 <hr> | |
| 71 <p>Copyright (c) Ian T Nabney (1996-9) | |
| 72 | |
| 73 | |
| 74 </body> | |
| 75 </html> | 
