comparison toolboxes/FullBNT-1.0.7/nethelp3.3/netevfwd.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual netevfwd
5 </title>
6 </head>
7 <body>
8 <H1> netevfwd
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Generic forward propagation with evidence for network
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19
20 [y, extra] = netevfwd(w, net, x, t, x_test)
21 [y, extra, invhess] = netevfwd(w, net, x, t, x_test, invhess)
22 </PRE>
23
24
25 <p><h2>
26 Description
27 </h2>
28 <CODE>[y, extra] = netevfwd(w, net, x, t, x_test)</CODE> takes a network data
29 structure
30 <CODE>net</CODE> together with the input <CODE>x</CODE> and target <CODE>t</CODE> training data
31 and input test data <CODE>x_test</CODE>.
32 It returns the normal forward propagation through the network <CODE>y</CODE>
33 together with a matrix <CODE>extra</CODE> which consists of error bars (variance)
34 for a regression problem or moderated outputs for a classification problem.
35
36 <p>The optional argument (and return value)
37 <CODE>invhess</CODE> is the inverse of the network Hessian
38 computed on the training data inputs and targets. Passing it in avoids
39 recomputing it, which can be a significant saving for large training sets.
40
41 <p><h2>
42 See Also
43 </h2>
44 <CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE>, <CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE>, <CODE><a href="glmevfwd.htm">glmevfwd</a></CODE>, <CODE><a href="fevbayes.htm">fevbayes</a></CODE><hr>
45 <b>Pages:</b>
46 <a href="index.htm">Index</a>
47 <hr>
48 <p>Copyright (c) Ian T Nabney (1996-9)
49
50
51 </body>
52 </html>