comparison toolboxes/FullBNT-1.0.7/nethelp3.3/mlpgrad.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual mlpgrad
5 </title>
6 </head>
7 <body>
8 <H1> mlpgrad
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Evaluate gradient of error function for 2-layer network.
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19
20 g = mlpgrad(net, x, t)
21 </PRE>
22
23
24 <p><h2>
25 Description
26 </h2>
27 <CODE>g = mlpgrad(net, x, t)</CODE> takes a network data structure <CODE>net</CODE>
28 together with a matrix <CODE>x</CODE> of input vectors and a matrix <CODE>t</CODE>
29 of target vectors, and evaluates the gradient <CODE>g</CODE> of the error
30 function with respect to the network weights. The error funcion
31 corresponds to the choice of output unit activation function. Each row
32 of <CODE>x</CODE> corresponds to one input vector and each row of <CODE>t</CODE>
33 corresponds to one target vector.
34
35 <p><CODE>[g, gdata, gprior] = mlpgrad(net, x, t)</CODE> also returns separately
36 the data and prior contributions to the gradient. In the case of
37 multiple groups in the prior, <CODE>gprior</CODE> is a matrix with a row
38 for each group and a column for each weight parameter.
39
40 <p><h2>
41 See Also
42 </h2>
43 <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlppak.htm">mlppak</a></CODE>, <CODE><a href="mlpunpak.htm">mlpunpak</a></CODE>, <CODE><a href="mlpfwd.htm">mlpfwd</a></CODE>, <CODE><a href="mlperr.htm">mlperr</a></CODE>, <CODE><a href="mlpbkp.htm">mlpbkp</a></CODE><hr>
44 <b>Pages:</b>
45 <a href="index.htm">Index</a>
46 <hr>
47 <p>Copyright (c) Ian T Nabney (1996-9)
48
49
50 </body>
51 </html>