comparison toolboxes/FullBNT-1.0.7/nethelp3.3/mdninit.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 <html>
2 <head>
3 <title>
4 Netlab Reference Manual mdninit
5 </title>
6 </head>
7 <body>
8 <H1> mdninit
9 </H1>
10 <h2>
11 Purpose
12 </h2>
13 Initialise the weights in a Mixture Density Network.
14
15 <p><h2>
16 Synopsis
17 </h2>
18 <PRE>
19 net = mdninit(net, prior)
20 net = mdninit(net, prior, t, options)
21 </PRE>
22
23
24 <p><h2>
25 Description
26 </h2>
27
28 <p><CODE>net = mdninit(net, prior)</CODE> takes a Mixture Density Network
29 <CODE>net</CODE> and sets the weights and biases by sampling from a Gaussian
30 distribution. It calls <CODE>mlpinit</CODE> for the MLP component of <CODE>net</CODE>.
31
32 <p><CODE>net = mdninit(net, prior, t, options)</CODE> uses the target data <CODE>t</CODE> to
33 initialise the biases for the output units after initialising the
34 other weights as above. It calls <CODE>gmminit</CODE>, with <CODE>t</CODE> and <CODE>options</CODE>
35 as arguments, to obtain a model of the unconditional density of <CODE>t</CODE>. The
36 biases are then set so that <CODE>net</CODE> will output the values in the Gaussian
37 mixture model.
38
39 <p><h2>
40 See Also
41 </h2>
42 <CODE><a href="mdn.htm">mdn</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlpinit.htm">mlpinit</a></CODE>, <CODE><a href="gmminit.htm">gmminit</a></CODE><hr>
43 <b>Pages:</b>
44 <a href="index.htm">Index</a>
45 <hr>
46 <p>Copyright (c) Ian T Nabney (1996-9)
47 <p>David J Evans (1998)
48
49 </body>
50 </html>