Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/gpfwd.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual gpfwd | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> gpfwd | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Forward propagation through Gaussian Process. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 y = gpfwd(net, x) | |
20 [y, sigsq] = gpfwd(net, x) | |
21 [y, sigsq] = gpfwd(net, x, cninv) | |
22 </PRE> | |
23 | |
24 | |
25 <p><h2> | |
26 Description | |
27 </h2> | |
28 <CODE>y = gpfwd(net, x)</CODE> takes a Gaussian Process data structure <CODE>net</CODE> | |
29 together | |
30 with a matrix <CODE>x</CODE> of input vectors, and forward propagates the inputs | |
31 through the model to generate a matrix <CODE>y</CODE> of output | |
32 vectors. Each row of <CODE>x</CODE> corresponds to one input vector and each | |
33 row of <CODE>y</CODE> corresponds to one output vector. This assumes that the | |
34 training data (both inputs and targets) has been stored in <CODE>net</CODE> by | |
35 a call to <CODE>gpinit</CODE>; these are needed to compute the training | |
36 data covariance matrix. | |
37 | |
38 <p><CODE>[y, sigsq] = gpfwd(net, x)</CODE> also generates a column vector <CODE>sigsq</CODE> of | |
39 conditional variances (or squared error bars) where each value corresponds to a pattern. | |
40 | |
41 <p><CODE>[y, sigsq] = gpfwd(net, x, cninv)</CODE> uses the pre-computed inverse covariance | |
42 matrix <CODE>cninv</CODE> in the forward propagation. This increases efficiency if | |
43 several calls to <CODE>gpfwd</CODE> are made. | |
44 | |
45 <p><h2> | |
46 Example | |
47 </h2> | |
48 The following code creates a Gaussian Process, trains it, and then plots the | |
49 predictions on a test set with one standard deviation error bars: | |
50 <PRE> | |
51 | |
52 net = gp(1, 'sqexp'); | |
53 net = gpinit(net, x, t); | |
54 net = netopt(net, options, x, t, 'scg'); | |
55 [pred, sigsq] = gpfwd(net, xtest); | |
56 plot(xtest, pred, '-k'); | |
57 hold on | |
58 plot(xtest, pred+sqrt(sigsq), '-b', xtest, pred-sqrt(sigsq), '-b'); | |
59 </PRE> | |
60 | |
61 | |
62 <p><h2> | |
63 See Also | |
64 </h2> | |
65 <CODE><a href="gp.htm">gp</a></CODE>, <CODE><a href="demgp.htm">demgp</a></CODE>, <CODE><a href="gpinit.htm">gpinit</a></CODE><hr> | |
66 <b>Pages:</b> | |
67 <a href="index.htm">Index</a> | |
68 <hr> | |
69 <p>Copyright (c) Ian T Nabney (1996-9) | |
70 | |
71 | |
72 </body> | |
73 </html> |