Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/gmm.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual gmm | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> gmm | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Creates a Gaussian mixture model with specified architecture. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 mix = gmm(dim, ncentres, covartype) | |
20 mix = gmm(dim, ncentres, covartype, ppca_dim) | |
21 </PRE> | |
22 | |
23 | |
24 <p><h2> | |
25 Description | |
26 </h2> | |
27 | |
28 <CODE>mix = gmm(dim, ncentres, covartype)</CODE> takes | |
29 the dimension of the space <CODE>dim</CODE>, the number of centres in the | |
30 mixture model and the type of the mixture model, and returns a data | |
31 structure <CODE>mix</CODE>. | |
32 The mixture model type defines the covariance structure of each component | |
33 Gaussian: | |
34 <PRE> | |
35 | |
36 'spherical' = single variance parameter for each component: stored as a vector | |
37 'diag' = diagonal matrix for each component: stored as rows of a matrix | |
38 'full' = full matrix for each component: stored as 3d array | |
39 'ppca' = probabilistic PCA: stored as principal components (in a 3d array | |
40 and associated variances and off-subspace noise | |
41 </PRE> | |
42 | |
43 <CODE>mix = gmm(dim, ncentres, covartype, ppca_dim)</CODE> also sets the dimension of | |
44 the PPCA sub-spaces: the default value is one. | |
45 | |
46 <p>The priors are initialised to equal values summing to one, and the covariances | |
47 are all the identity matrix (or equivalent). The centres are | |
48 initialised randomly from a zero mean unit variance Gaussian. This makes use | |
49 of the MATLAB function <CODE>randn</CODE> and so the seed for the random weight | |
50 initialisation can be set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the | |
51 state value. | |
52 | |
53 <p>The fields in <CODE>mix</CODE> are | |
54 <PRE> | |
55 | |
56 type = 'gmm' | |
57 nin = the dimension of the space | |
58 ncentres = number of mixture components | |
59 covartype = string for type of variance model | |
60 priors = mixing coefficients | |
61 centres = means of Gaussians: stored as rows of a matrix | |
62 covars = covariances of Gaussians | |
63 </PRE> | |
64 | |
65 The additional fields for mixtures of PPCA are | |
66 <PRE> | |
67 | |
68 U = principal component subspaces | |
69 lambda = in-space covariances: stored as rows of a matrix | |
70 </PRE> | |
71 | |
72 The off-subspace noise is stored in <CODE>covars</CODE>. | |
73 | |
74 <p><h2> | |
75 Example | |
76 </h2> | |
77 <PRE> | |
78 | |
79 mix = gmm(2, 4, 'spherical'); | |
80 </PRE> | |
81 | |
82 This creates a Gaussian mixture model with 4 components in 2 dimensions. | |
83 The covariance structure is a spherical model. | |
84 | |
85 <p><h2> | |
86 See Also | |
87 </h2> | |
88 <CODE><a href="gmmpak.htm">gmmpak</a></CODE>, <CODE><a href="gmmunpak.htm">gmmunpak</a></CODE>, <CODE><a href="gmmsamp.htm">gmmsamp</a></CODE>, <CODE><a href="gmminit.htm">gmminit</a></CODE>, <CODE><a href="gmmem.htm">gmmem</a></CODE>, <CODE><a href="gmmactiv.htm">gmmactiv</a></CODE>, <CODE><a href="gmmpost.htm">gmmpost</a></CODE>, <CODE><a href="gmmprob.htm">gmmprob</a></CODE><hr> | |
89 <b>Pages:</b> | |
90 <a href="index.htm">Index</a> | |
91 <hr> | |
92 <p>Copyright (c) Ian T Nabney (1996-9) | |
93 | |
94 | |
95 </body> | |
96 </html> |