Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/nethelp3.3/glmhess.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 <html> | |
2 <head> | |
3 <title> | |
4 Netlab Reference Manual glmhess | |
5 </title> | |
6 </head> | |
7 <body> | |
8 <H1> glmhess | |
9 </H1> | |
10 <h2> | |
11 Purpose | |
12 </h2> | |
13 Evaluate the Hessian matrix for a generalised linear model. | |
14 | |
15 <p><h2> | |
16 Synopsis | |
17 </h2> | |
18 <PRE> | |
19 h = glmhess(net, x, t) | |
20 [h, hdata] = glmhess(net, x, t) | |
21 h = glmhess(net, x, t, hdata) | |
22 </PRE> | |
23 | |
24 | |
25 <p><h2> | |
26 Description | |
27 </h2> | |
28 <CODE>h = glmhess(net, x, t)</CODE> takes a GLM network data structure <CODE>net</CODE>, | |
29 a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of target | |
30 values and returns the full Hessian matrix <CODE>h</CODE> corresponding to | |
31 the second derivatives of the negative log posterior distribution, | |
32 evaluated for the current weight and bias values as defined by | |
33 <CODE>net</CODE>. Note that the target data is not required in the calculation, | |
34 but is included to make the interface uniform with <CODE>nethess</CODE>. For | |
35 linear and logistic outputs, the computation is very simple and is | |
36 done (in effect) in one line in <CODE>glmtrain</CODE>. | |
37 | |
38 <p><CODE>[h, hdata] = glmhess(net, x, t)</CODE> returns both the Hessian matrix | |
39 <CODE>h</CODE> and the contribution <CODE>hdata</CODE> arising from the data dependent | |
40 term in the Hessian. | |
41 | |
42 <p><CODE>h = glmhess(net, x, t, hdata)</CODE> takes a network data structure | |
43 <CODE>net</CODE>, a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of | |
44 target values, together with the contribution <CODE>hdata</CODE> arising from | |
45 the data dependent term in the Hessian, and returns the full Hessian | |
46 matrix <CODE>h</CODE> corresponding to the second derivatives of the negative | |
47 log posterior distribution. This version saves computation time if | |
48 <CODE>hdata</CODE> has already been evaluated for the current weight and bias | |
49 values. | |
50 | |
51 <p><h2> | |
52 Example | |
53 </h2> | |
54 The Hessian matrix is used by <CODE>glmtrain</CODE> to take a Newton step for | |
55 softmax outputs. | |
56 <PRE> | |
57 | |
58 Hessian = glmhess(net, x, t); | |
59 deltaw = -gradient*pinv(Hessian); | |
60 </PRE> | |
61 | |
62 | |
63 <p><h2> | |
64 See Also | |
65 </h2> | |
66 <CODE><a href="glm.htm">glm</a></CODE>, <CODE><a href="glmtrain.htm">glmtrain</a></CODE>, <CODE><a href="hesschek.htm">hesschek</a></CODE>, <CODE><a href="nethess.htm">nethess</a></CODE><hr> | |
67 <b>Pages:</b> | |
68 <a href="index.htm">Index</a> | |
69 <hr> | |
70 <p>Copyright (c) Ian T Nabney (1996-9) | |
71 | |
72 | |
73 </body> | |
74 </html> |