comparison toolboxes/FullBNT-1.0.7/graph/check_triangulated.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [triangulated, order] = check_triangulated(G)
2 % CHECK_TRIANGULATED Return 1 if G is a triangulated (chordal) graph, 0 otherwise.
3 % [triangulated, order] = check_triangulated(G)
4 %
5 % A numbering alpha is perfect if Nbrs(alpha(i)) intersect {alpha(1)...alpha(i-1)} is complete.
6 % A graph is triangulated iff it has a perfect numbering.
7 % The Maximum Cardinality Search algorithm will create such a perfect numbering if possible.
8 % See Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Cambridge Univ. Press, 1985, p85.
9 % or Castillo, Gutierrez and Hadi, "Expert systems and probabilistic network models", Springer 1997, p134.
10
11
12 G = setdiag(G, 1);
13 n = length(G);
14 order = zeros(1,n);
15 triangulated = 1;
16 numbered = [1];
17 order(1) = 1;
18 for i=2:n
19 U = mysetdiff(1:n, numbered); % unnumbered nodes
20 score = zeros(1, length(U));
21 for ui=1:length(U)
22 u = U(ui);
23 score(ui) = length(myintersect(neighbors(G, u), numbered));
24 end
25 u = U(argmax(score));
26 numbered = [numbered u];
27 order(i) = u;
28 nns = myintersect(neighbors(G,u), order(1:i-1)); % numbered neighbors
29 if ~isequal(G(nns,nns), ones(length(nns))) % ~complete(G(nns,nns))
30 triangulated = 0;
31 break;
32 end
33 end
34