Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/graph/check_triangulated.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function [triangulated, order] = check_triangulated(G) | |
2 % CHECK_TRIANGULATED Return 1 if G is a triangulated (chordal) graph, 0 otherwise. | |
3 % [triangulated, order] = check_triangulated(G) | |
4 % | |
5 % A numbering alpha is perfect if Nbrs(alpha(i)) intersect {alpha(1)...alpha(i-1)} is complete. | |
6 % A graph is triangulated iff it has a perfect numbering. | |
7 % The Maximum Cardinality Search algorithm will create such a perfect numbering if possible. | |
8 % See Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Cambridge Univ. Press, 1985, p85. | |
9 % or Castillo, Gutierrez and Hadi, "Expert systems and probabilistic network models", Springer 1997, p134. | |
10 | |
11 | |
12 G = setdiag(G, 1); | |
13 n = length(G); | |
14 order = zeros(1,n); | |
15 triangulated = 1; | |
16 numbered = [1]; | |
17 order(1) = 1; | |
18 for i=2:n | |
19 U = mysetdiff(1:n, numbered); % unnumbered nodes | |
20 score = zeros(1, length(U)); | |
21 for ui=1:length(U) | |
22 u = U(ui); | |
23 score(ui) = length(myintersect(neighbors(G, u), numbered)); | |
24 end | |
25 u = U(argmax(score)); | |
26 numbered = [numbered u]; | |
27 order(i) = u; | |
28 nns = myintersect(neighbors(G,u), order(1:i-1)); % numbered neighbors | |
29 if ~isequal(G(nns,nns), ones(length(nns))) % ~complete(G(nns,nns)) | |
30 triangulated = 0; | |
31 break; | |
32 end | |
33 end | |
34 |