Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/learning/learn_params.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function bnet = learn_params(bnet, data) | |
2 % LEARN_PARAMS Find the maximum likelihood params for a fully observed model | |
3 % bnet = learn_params(bnet, data) | |
4 % | |
5 % data(i,m) is the value of node i in case m (can be a cell array) | |
6 % | |
7 % We set bnet.CPD{i} to its ML/MAP estimate. | |
8 % | |
9 % Currently we assume no param tying | |
10 | |
11 % AND THAT EACH DATA POINT IS A SCALAR - no longer assumed | |
12 | |
13 %if iscell(data) | |
14 % data=cell2num(data); | |
15 %end | |
16 [n ncases] = size(data); | |
17 for j=1:n | |
18 e = bnet.equiv_class(j); | |
19 assert(e==j); | |
20 if adjustable_CPD(bnet.CPD{e}) | |
21 fam = family(bnet.dag,j); | |
22 %bnet.CPD{j} = learn_params(bnet.CPD{j}, data(fam,:)); | |
23 bnet.CPD{j} = learn_params(bnet.CPD{j}, fam, data, bnet.node_sizes, bnet.cnodes); | |
24 end | |
25 end | |
26 |