comparison toolboxes/FullBNT-1.0.7/bnt/inference/dynamic/@hmm_inf_engine/fwdback_twoslice.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [alpha, beta, gamma, loglik, xi, gamma2] = fwdback_twoslice(engine, init_state_distrib, transmat, obslik, varargin)
2 % FWDBACK Compute the posterior probs. in an HMM using the forwards backwards algo.
3 %
4 % [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(init_state_distrib, transmat, obslik, ...)
5 %
6 % Notation:
7 % Y(t) = observation, Q(t) = hidden state, M(t) = mixture variable (for MOG outputs)
8 % A(t) = discrete input (action) (for POMDP models)
9 %
10 % INPUT:
11 % init_state_distrib(i) = Pr(Q(1) = i)
12 % transmat(i,j) = Pr(Q(t) = j | Q(t-1)=i)
13 % or transmat{a}(i,j) = Pr(Q(t) = j | Q(t-1)=i, A(t-1)=a) if there are discrete inputs
14 % obslik(i,t) = Pr(Y(t)| Q(t)=i)
15 % (Compute obslik using eval_pdf_xxx on your data sequence first.)
16 %
17 % Optional parameters may be passed as 'param_name', param_value pairs.
18 % Parameter names are shown below; default values in [] - if none, argument is mandatory.
19 %
20 % For HMMs with MOG outputs: if you want to compute gamma2, you must specify
21 % 'obslik2' - obslik(i,j,t) = Pr(Y(t)| Q(t)=i,M(t)=j) []
22 % 'mixmat' - mixmat(i,j) = Pr(M(t) = j | Q(t)=i) []
23 %
24 % For HMMs with discrete inputs:
25 % 'act' - act(t) = action performed at step t
26 %
27 % Optional arguments:
28 % 'fwd_only' - if 1, only do a forwards pass and set beta=[], gamma2=[] [0]
29 % 'scaled' - if 1, normalize alphas and betas to prevent underflow [1]
30 % 'maximize' - if 1, use max-product instead of sum-product [0]
31 %
32 % OUTPUTS:
33 % alpha(i,t) = p(Q(t)=i | y(1:t)) (or p(Q(t)=i, y(1:t)) if scaled=0)
34 % beta(i,t) = p(y(t+1:T) | Q(t)=i)*p(y(t+1:T)|y(1:t)) (or p(y(t+1:T) | Q(t)=i) if scaled=0)
35 % gamma(i,t) = p(Q(t)=i | y(1:T))
36 % loglik = log p(y(1:T))
37 % xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:T))
38 % gamma2(j,k,t) = p(Q(t)=j, M(t)=k | y(1:T)) (only for MOG outputs)
39 %
40 % If fwd_only = 1, these become
41 % alpha(i,t) = p(Q(t)=i | y(1:t))
42 % beta = []
43 % gamma(i,t) = p(Q(t)=i | y(1:t))
44 % xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:t))
45 % gamma2 = []
46 %
47 % Note: we only compute xi if it is requested as a return argument, since it can be very large.
48 % Similarly, we only compute gamma2 on request (and if using MOG outputs).
49 %
50 % Examples:
51 %
52 % [alpha, beta, gamma, loglik] = fwdback(pi, A, multinomial_prob(sequence, B));
53 %
54 % [B, B2] = mixgauss_prob(data, mu, Sigma, mixmat);
55 % [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(pi, A, B, 'obslik2', B2, 'mixmat', mixmat);
56
57
58 if nargout >= 5, compute_xi = 1; else compute_xi = 0; end
59 if nargout >= 6, compute_gamma2 = 1; else compute_gamma2 = 0; end
60
61 [obslik2, mixmat, fwd_only, scaled, act, maximize, compute_xi, compute_gamma2] = process_options(varargin, 'obslik2', [], 'mixmat', [], 'fwd_only', 0, 'scaled', 1, 'act', [], 'maximize', 0, 'compute_xi', compute_xi, 'compute_gamma2', compute_gamma2);
62
63
64 [Q T] = size(obslik);
65
66 if isempty(obslik2)
67 compute_gamma2 = 0;
68 end
69
70 if isempty(act)
71 act = ones(1,T);
72 transmat = { transmat } ;
73 end
74
75 scale = ones(1,T);
76
77 % scale(t) = Pr(O(t) | O(1:t-1)) = 1/c(t) as defined by Rabiner (1989).
78 % Hence prod_t scale(t) = Pr(O(1)) Pr(O(2)|O(1)) Pr(O(3) | O(1:2)) = Pr(O(1), ... ,O(T))
79 % or log P = sum_t log scale(t).
80 % Rabiner suggests multiplying beta(t) by scale(t), but we can instead
81 % normalise beta(t) - the constants will cancel when we compute gamma.
82
83 loglik = 0;
84
85 alpha = zeros(Q,T);
86 gamma = zeros(Q,T);
87 if compute_xi
88 xi = zeros(Q,Q,T-1);
89 else
90 xi = [];
91 end
92
93
94 %%%%%%%%% Forwards %%%%%%%%%%
95
96 t = 1;
97 alpha(:,1) = init_state_distrib(:) .* obslik(:,t);
98 if scaled
99 %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t));
100 [alpha(:,t), scale(t)] = normalise(alpha(:,t));
101 end
102 if scaled, assert(approxeq(sum(alpha(:,t)),1)), end
103 for t=2:T
104 %trans = transmat(:,:,act(t-1))';
105 trans = transmat{act(t-1)};
106 if maximize
107 m = max_mult(trans', alpha(:,t-1));
108 %A = repmat(alpha(:,t-1), [1 Q]);
109 %m = max(trans .* A, [], 1);
110 else
111 m = trans' * alpha(:,t-1);
112 end
113 alpha(:,t) = m(:) .* obslik(:,t);
114 if scaled
115 %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t));
116 [alpha(:,t), scale(t)] = normalise(alpha(:,t));
117 end
118 if compute_xi & fwd_only % useful for online EM
119 %xi(:,:,t-1) = normaliseC((alpha(:,t-1) * obslik(:,t)') .* trans);
120 xi(:,:,t-1) = normalise((alpha(:,t-1) * obslik(:,t)') .* trans);
121 end
122 if scaled, assert(approxeq(sum(alpha(:,t)),1)), end
123 end
124 if scaled
125 if any(scale==0)
126 loglik = -inf;
127 else
128 loglik = sum(log(scale));
129 end
130 else
131 loglik = log(sum(alpha(:,T)));
132 end
133
134 if fwd_only
135 gamma = alpha;
136 beta = [];
137 gamma2 = [];
138 return;
139 end
140
141
142 %%%%%%%%% Backwards %%%%%%%%%%
143
144 beta = zeros(Q,T);
145 if compute_gamma2
146 M = size(mixmat, 2);
147 gamma2 = zeros(Q,M,T);
148 else
149 gamma2 = [];
150 end
151
152 beta(:,T) = ones(Q,1);
153 %gamma(:,T) = normaliseC(alpha(:,T) .* beta(:,T));
154 gamma(:,T) = normalise(alpha(:,T) .* beta(:,T));
155 t=T;
156 if compute_gamma2
157 denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing
158 gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]);
159 %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M])); % wrong!
160 end
161 for t=T-1:-1:1
162 b = beta(:,t+1) .* obslik(:,t+1);
163 %trans = transmat(:,:,act(t));
164 trans = transmat{act(t)};
165 if maximize
166 B = repmat(b(:)', Q, 1);
167 beta(:,t) = max(trans .* B, [], 2);
168 else
169 beta(:,t) = trans * b;
170 end
171 if scaled
172 %beta(:,t) = normaliseC(beta(:,t));
173 beta(:,t) = normalise(beta(:,t));
174 end
175 %gamma(:,t) = normaliseC(alpha(:,t) .* beta(:,t));
176 gamma(:,t) = normalise(alpha(:,t) .* beta(:,t));
177 if compute_xi
178 %xi(:,:,t) = normaliseC((trans .* (alpha(:,t) * b')));
179 xi(:,:,t) = normalise((trans .* (alpha(:,t) * b')));
180 %xi(:,:,t) = (trans .* (alpha(:,t) * b'));
181 end
182 if compute_gamma2
183 denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing
184 gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]);
185 %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]));
186 end
187 end
188
189
190 % We now explain the equation for gamma2
191 % Let zt=y(1:t-1,t+1:T) be all observations except y(t)
192 % gamma2(Q,M,t) = P(Qt,Mt|yt,zt) = P(yt|Qt,Mt,zt) P(Qt,Mt|zt) / P(yt|zt)
193 % = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|zt) / P(yt|zt)
194 % Now gamma(Q,t) = P(Qt|yt,zt) = P(yt|Qt) P(Qt|zt) / P(yt|zt)
195 % hence
196 % P(Qt,Mt|yt,zt) = P(yt|Qt,Mt) P(Mt|Qt) [P(Qt|yt,zt) P(yt|zt) / P(yt|Qt)] / P(yt|zt)
197 % = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|yt,zt) / P(yt|Qt)
198 %