Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/general/mk_limid.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function bnet = mk_limid(dag, node_sizes, varargin) | |
2 % MK_LIMID Make a limited information influence diagram | |
3 % | |
4 % BNET = MK_LIMID(DAG, NODE_SIZES, ...) | |
5 % DAG is the adjacency matrix for a directed acyclic graph. | |
6 % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. | |
7 % For decision nodes, the parents must explicitely include all nodes | |
8 % on which it can depends, in contrast to the implicit no-forgetting assumption of influence diagrams. | |
9 % (For details, see "Representing and solving decision problems with limited information", | |
10 % Lauritzen and Nilsson, Management Science, 2001.) | |
11 % | |
12 % node_sizes(i) is the number of values node i can take on, | |
13 % or the length of node i if i is a continuous-valued vector. | |
14 % node_sizes(i) = 1 if i is a utility node. | |
15 % | |
16 % The list below gives optional arguments [default value in brackets]. | |
17 % | |
18 % chance - the list of nodes which are random variables [1:N] | |
19 % decision - the list of nodes which are decision nodes [ [] ] | |
20 % utility - the list of nodes which are utility nodes [ [] ] | |
21 % equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N] | |
22 % | |
23 % e.g., limid = mk_limid(dag, ns, 'chance', [1 3], 'utility', [2]) | |
24 | |
25 n = length(dag); | |
26 | |
27 % default values for parameters | |
28 bnet.chance_nodes = 1:n; | |
29 bnet.equiv_class = 1:n; | |
30 bnet.utility_nodes = []; | |
31 bnet.decision_nodes = []; | |
32 bnet.dnodes = 1:n; % discrete | |
33 | |
34 if nargin >= 3 | |
35 args = varargin; | |
36 nargs = length(args); | |
37 if ~isstr(args{1}) | |
38 if nargs >= 1, bnet.dnodes = args{1}; end | |
39 if nargs >= 2, bnet.equiv_class = args{2}; end | |
40 else | |
41 for i=1:2:nargs | |
42 switch args{i}, | |
43 case 'equiv_class', bnet.equiv_class = args{i+1}; | |
44 case 'chance', bnet.chance_nodes = args{i+1}; | |
45 case 'utility', bnet.utility_nodes = args{i+1}; | |
46 case 'decision', bnet.decision_nodes = args{i+1}; | |
47 case 'discrete', bnet.dnodes = args{i+1}; | |
48 otherwise, | |
49 error(['invalid argument name ' args{i}]); | |
50 end | |
51 end | |
52 end | |
53 end | |
54 | |
55 bnet.limid = 1; | |
56 | |
57 bnet.dag = dag; | |
58 bnet.node_sizes = node_sizes(:)'; | |
59 | |
60 bnet.cnodes = mysetdiff(1:n, bnet.dnodes); | |
61 % too many functions refer to cnodes to rename it to cts_nodes - | |
62 % We hope it won't be confused with chance nodes! | |
63 | |
64 bnet.parents = cell(1,n); | |
65 for i=1:n | |
66 bnet.parents{i} = parents(dag, i); | |
67 end | |
68 | |
69 E = max(bnet.equiv_class); | |
70 mem = cell(1,E); | |
71 for i=1:n | |
72 e = bnet.equiv_class(i); | |
73 mem{e} = [mem{e} i]; | |
74 end | |
75 bnet.members_of_equiv_class = mem; | |
76 | |
77 bnet.CPD = cell(1, E); | |
78 | |
79 % for e=1:E | |
80 % i = bnet.members_of_equiv_class{e}(1); % pick arbitrary member | |
81 % switch type{e} | |
82 % case 'tabular', bnet.CPD{e} = tabular_CPD(bnet, i); | |
83 % case 'gaussian', bnet.CPD{e} = gaussian_CPD(bnet, i); | |
84 % otherwise, error(['unrecognized CPD type ' type{e}]); | |
85 % end | |
86 % end | |
87 | |
88 directed = 1; | |
89 if ~acyclic(dag,directed) | |
90 error('graph must be acyclic') | |
91 end | |
92 | |
93 bnet.order = topological_sort(bnet.dag); |