comparison toolboxes/FullBNT-1.0.7/bnt/general/mk_fgraph.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function fg = mk_fgraph(G, node_sizes, factors, varargin)
2 % MK_FGRAPH Make a factor graph
3 % fg = mk_fgraph(G, node_sizes, factors, ...)
4 %
5 % A factor graph is a bipartite graph, with one side containing variables,
6 % and the other containing functions of (subsets of) these variables.
7 % For details, see "Factor Graphs and the Sum-Product Algorithm",
8 % F. Kschischang and B. Frey and H-A. Loeliger,
9 % IEEE Trans. Info. Theory, 2001
10 %
11 % G(i,j) = 1 if there is an arc from variable i to factor j
12 %
13 % node_sizes(i) is the number of values node i can take on,
14 % or the length of node i if i is a continuous-valued vector.
15 %
16 % 'factors' is the list of factors (kernel functions)
17 %
18 % The list below gives optional arguments [default value in brackets].
19 %
20 % equiv_class - equiv_class(i)=j means factor node i gets its params from factors{j} [1:F]
21 % discrete - the list of nodes which are discrete random variables [1:N]
22 %
23 % e.g., fg = mk_fgraph(G, [2 2], {bnet.CPD{1},bnet.CPD{2}}, 'discrete', [1 2])
24
25 fg.G = G;
26 fg.node_sizes = node_sizes;
27 fg.factors = factors;
28 [fg.nvars fg.nfactors] = size(G);
29
30 % default values for parameters
31 fg.equiv_class = 1:fg.nfactors;
32 fg.dnodes = 1:fg.nvars;
33
34 if nargin >= 4
35 args = varargin;
36 nargs = length(args);
37 for i=1:2:nargs
38 switch args{i},
39 case 'equiv_class', fg.equiv_class = args{i+1};
40 case 'discrete', fg.dnodes = args{i+1};
41 otherwise,
42 error(['invalid argument name ' args{i}]);
43 end
44 end
45 end
46
47 % so that determine_pot_type will work...
48 fg.utility_nodes = [];
49 %fg.decision_nodes = [];
50 %fg.chance_nodes = fg.nvars;
51
52 fg.dom = cell(1, fg.nfactors);
53 for f=1:fg.nfactors
54 fg.dom{f} = find(G(:,f));
55 end
56 fg.dep = cell(1, fg.nvars);
57 for x=1:fg.nvars
58 fg.dep{x} = find(G(x,:));
59 end
60 fg.cnodes = mysetdiff(1:fg.nvars, fg.dnodes);