comparison toolboxes/FullBNT-1.0.7/bnt/general/log_marg_lik_complete.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function L = log_marg_lik_complete(bnet, cases, clamped)
2 % LOG_MARG_LIK_COMPLETE Compute sum_m sum_i log P(x(i,m)| x(pi_i,m)) for a completely observed data set
3 % L = log_marg_lik_complete(bnet, cases, clamped)
4 %
5 % This differs from log_lik_complete because we integrate out the parameters.
6 % If there is a missing data, you must use an inference engine.
7 % cases(i,m) is the value assigned to node i in case m.
8 % (If there are vector-valued nodes, cases should be a cell array.)
9 % clamped(i,m) = 1 if node i was set by intervention in case m (default: clamped = zeros)
10 % Clamped nodes contribute a factor of 1.0 to the likelihood.
11 %
12 % If there is a single case, clamped is a list of the clamped nodes, not a bit vector.
13
14 if iscell(cases), usecell = 1; else usecell = 0; end
15
16 n = length(bnet.dag);
17 ncases = size(cases, 2);
18 if n ~= size(cases, 1)
19 error('data should be of size nnodes * ncases');
20 end
21
22 if ncases == 1
23 if nargin < 3, clamped = []; end
24 clamp_set = clamped;
25 clamped = zeros(n,1);
26 clamped(clamp_set) = 1;
27 else
28 if nargin < 3, clamped = zeros(n,ncases); end
29 end
30
31 L = 0;
32 for i=1:n
33 ps = parents(bnet.dag, i);
34 e = bnet.equiv_class(i);
35 u = find(clamped(i,:)==0);
36 L = L + log_marg_prob_node(bnet.CPD{e}, cases(i,u), cases(ps,u));
37 end
38
39
40