Mercurial > hg > camir-aes2014
comparison toolboxes/FullBNT-1.0.7/bnt/general/log_lik_complete.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e9a9cd732c1e |
---|---|
1 function L = log_lik_complete(bnet, cases, clamped) | |
2 % LOG_LIK_COMPLETE Compute sum_m sum_i log P(x(i,m)| x(pi_i,m), theta_i) for a completely observed data set | |
3 % L = log_lik_complete(bnet, cases, clamped) | |
4 % | |
5 % If there is a missing data, you must use an inference engine. | |
6 % cases(i,m) is the value assigned to node i in case m. | |
7 % (If there are vector-valued nodes, cases should be a cell array.) | |
8 % clamped(i,m) = 1 if node i was set by intervention in case m (default: clamped = zeros) | |
9 % Clamped nodes contribute a factor of 1.0 to the likelihood. | |
10 | |
11 if iscell(cases), usecell = 1; else usecell = 0; end | |
12 | |
13 n = length(bnet.dag); | |
14 ncases = size(cases, 2); | |
15 if n ~= size(cases, 1) | |
16 error('data should be of size nnodes * ncases'); | |
17 end | |
18 | |
19 if nargin < 3, clamped = zeros(n,ncases); end | |
20 | |
21 L = 0; | |
22 for i=1:n | |
23 ps = parents(bnet.dag, i); | |
24 e = bnet.equiv_class(i); | |
25 u = find(clamped(i,:)==0); | |
26 ll = log_prob_node(bnet.CPD{e}, cases(i,u), cases(ps,u)); | |
27 if approxeq(exp(ll), 0), fprintf('node %d has very low likelihood\n'); end | |
28 L = L + ll; | |
29 end | |
30 |