comparison toolboxes/FullBNT-1.0.7/bnt/examples/static/sprinkler1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 % Lawn sprinker example from Russell and Norvig p454
2 % For a picture, see http://www.cs.berkeley.edu/~murphyk/Bayes/usage.html#basics
3
4 N = 4;
5 dag = zeros(N,N);
6 C = 1; S = 2; R = 3; W = 4;
7 dag(C,[R S]) = 1;
8 dag(R,W) = 1;
9 dag(S,W)=1;
10
11 false = 1; true = 2;
12 ns = 2*ones(1,N); % binary nodes
13
14 %bnet = mk_bnet(dag, ns);
15 bnet = mk_bnet(dag, ns, 'names', {'cloudy','S','R','W'}, 'discrete', 1:4);
16 names = bnet.names;
17 %C = names{'cloudy'};
18 bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]);
19 bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]);
20 bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]);
21 bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]);
22
23
24 CPD{C} = reshape([0.5 0.5], 2, 1);
25 CPD{R} = reshape([0.8 0.2 0.2 0.8], 2, 2);
26 CPD{S} = reshape([0.5 0.9 0.5 0.1], 2, 2);
27 CPD{W} = reshape([1 0.1 0.1 0.01 0 0.9 0.9 0.99], 2, 2, 2);
28 joint = zeros(2,2,2,2);
29 for c=1:2
30 for r=1:2
31 for s=1:2
32 for w=1:2
33 joint(c,s,r,w) = CPD{C}(c) * CPD{S}(c,s) * CPD{R}(c,r) * ...
34 CPD{W}(s,r,w);
35 end
36 end
37 end
38 end
39
40 joint2 = repmat(reshape(CPD{C}, [2 1 1 1]), [1 2 2 2]) .* ...
41 repmat(reshape(CPD{S}, [2 2 1 1]), [1 1 2 2]) .* ...
42 repmat(reshape(CPD{R}, [2 1 2 1]), [1 2 1 2]) .* ...
43 repmat(reshape(CPD{W}, [1 2 2 2]), [2 1 1 1]);
44
45 assert(approxeq(joint, joint2));
46
47
48 engine = jtree_inf_engine(bnet);
49
50 evidence = cell(1,N);
51 evidence{W} = true;
52
53 [engine, ll] = enter_evidence(engine, evidence);
54
55 m = marginal_nodes(engine, S);
56 p1 = m.T(true) % P(S=true|W=true) = 0.4298
57 lik1 = exp(ll); % P(W=true) = 0.6471
58 assert(approxeq(p1, 0.4298));
59 assert(approxeq(lik1, 0.6471));
60
61 pSandW = sumv(joint(:,true,:,true), [C R]); % P(S,W) = sum_cr P(CSRW)
62 pW = sumv(joint(:,:,:,true), [C S R]);
63 pSgivenW = pSandW / pW; % P(S=t|W=t) = P(S=t,W=t)/P(W=t)
64 assert(approxeq(pW, lik1))
65 assert(approxeq(pSgivenW, p1))
66
67
68 m = marginal_nodes(engine, R);
69 p2 = m.T(true) % P(R=true|W=true) = 0.7079
70
71 pRandW = sumv(joint(:,:,true,true), [C S]); % P(R,W) = sum_cr P(CSRW)
72 pRgivenW = pRandW / pW; % P(R=t|W=t) = P(R=t,W=t)/P(W=t)
73 assert(approxeq(pRgivenW, p2))
74
75
76 % Add extra evidence that R=true
77 evidence{R} = true;
78
79 [engine, ll] = enter_evidence(engine, evidence);
80
81 m = marginal_nodes(engine, S);
82 p3 = m.T(true) % P(S=true|W=true,R=true) = 0.1945
83 assert(approxeq(p3, 0.1945))
84
85
86 pSandRandW = sumv(joint(:,true,true,true), [C]); % P(S,R,W) = sum_c P(cSRW)
87 pRandW = sumv(joint(:,:,true,true), [C S]); % P(R,W) = sum_cs P(cSRW)
88 pSgivenWR = pSandRandW / pRandW; % P(S=t|W=t,R=t) = P(S=t,R=t,W=t)/P(W=t,R=t)
89 assert(approxeq(pSgivenWR, p3))
90
91 % So the sprinkler is less likely to be on if we know that
92 % it is raining, since the rain can "explain away" the fact
93 % that the grass is wet.
94
95 lik3 = exp(ll); % P(W=true, R=true) = 0.4581
96 % So the combined evidence is less likely (of course)
97
98
99
100
101 % Joint distributions
102
103 evidence = cell(1,N);
104 [engine, ll] = enter_evidence(engine, evidence);
105 m = marginal_nodes(engine, [S R W]);
106
107 evidence{R} = 2;
108 [engine, ll] = enter_evidence(engine, evidence);
109 m = marginal_nodes(engine, [S R W]);
110
111
112